Model and solution method for an integrated value chain problem for sawmills

Maria Anna Huka, Marc-André Carle, Sophie D’Amours and Mikael Rönnqvist

BOKU - University of Natural Resources and Life Sciences, Vienna
FORAC - Université Laval, Québec

19 August 2015
Overview

1. Problem description
2. Optimization approach
3. Heuristical solution approach
4. Literature
5. Numerical experiments
6. Conclusion and outlook
Overview

1 Problem description
2 Optimization approach
3 Heuristical solution approach
4 Literature
5 Numerical experiments
6 Conclusion and outlook
Problem description

Goal

Optimization of the Canadian value chain from forest to customers passing four production units

- harvesting unit
- sawing unit
- drying unit
- finishing unit

with a mixed integer program including detailed dry kiln scheduling.
Problem description cont’d

Context

• Solving on a tactical level
• Satisfying demand for specific products
• Problem of co-production in sawing and planing, e.g. chips, sawdust and shavings
• Characteristics of MIP model which makes it difficult to solve; symmetric with respect to drying units, high flexibility in flows, weak LP formulation
• LP model for solving material flow from forest to customers and between sawmills
• IP model for detailed dry kiln schedule solved as a sub-problem with an IP model and is fed to the MIP model as good starting solution
• Decomposition to solve large scale MIP problem
Motivation

Value Chain from forest to customers

Figure: Integrated value chain problem for sawmills
Overview

1. Problem description
2. Optimization approach
3. Heuristical solution approach
4. Literature
5. Numerical experiments
6. Conclusion and outlook
Mixed integer program

MIP model

- Maximizing revenue of delivered products, profit of green, dried and planed lumber minus sum of costs (harvesting, sawing, drying, planing, transportation and inventory costs)
- Capacity constraints
- Inventory constraints
- Demand satisfaction constraint for green, dried and planed lumber
- Binary constraint for dry kiln scheduling
Model properties

Characteristics

- Divergent and complex problem
- Symmetric with respect to drying units
- High flexibility in flows
- Weak LP formulation
- No solution in reasonable amount of time
Overview

1 Problem description
2 Optimization approach
3 Heuristical solution approach
4 Literature
5 Numerical experiments
6 Conclusion and outlook
Heuristic based on time composition

1. Divide the planning horizon into \(n \) equal intervals with length \(k \)
2. Solve problem \(P_j \) and get the solution and keep binary variables
3. Set these binary variables equal to 1 and add them as new constraints in the problem \(P_{i+1} \)
4. Solve the problem \(P_{i+1} \) and get the solution and keep binary variables
5. Increment \(i \), \(i = i + 1 \)
6. If \(i > n \) then stop
7. Go to step 3.
Split heuristic cont’d

Divided planning horizons

Figure: Time decomposition over the planning horizon to solve overall model
LP relaxation heuristic

MIP based heuristic

1. Solve **linear relaxation** of problem. Get optimal supply plan and fix all continuous variables
2. Solve **MIP-based heuristic** to fix kiln drying batch decisions
3. Resolve original model while **fixing integer kiln drying decision variables**
LP relaxation heuristic cont’d

Solution phases

Figure: The three phases method
Overview

1. Problem description
2. Optimization approach
3. Heuristical solution approach
4. Literature
5. Numerical experiments
6. Conclusion and outlook
Heuristic solution approaches

Two different approaches:

- **Time decomposition**

- **LP relaxation**
Overview

1. Problem description
2. Optimization approach
3. Heuristical solution approach
4. Literature
5. Numerical experiments
6. Conclusion and outlook
Data

Case study

- 5 forest
- 4 saws
- 6 dry kiln
- 63 periods
- 9 log types
- 23 green lumber
- 21 dried lumber
- 85 planed lumber
- 4 customers
- 4 harvesting processes
- 39 sawing processes
- 6 drying processes
- 3 planing processes
Data

Case study
- 5 forest
- 4 saws
- 6 dry kiln
- 63 periods
- 9 log types
- 23 green lumber
- 21 dried lumber
- 85 planed lumber
- 4 customers
- 4 harvesting processes
- 39 sawing processes
- 6 drying processes
- 3 planing processes

Complexity of problem

Presolve eliminates 0 constraints and 11088 variables.
Adjusted problem:
573111 variables:
 9072 binary variables
 564039 linear variables
142665 constraints, all linear; 2882445 nonzeros
 39675 equality constraints
 102990 inequality constraints
1 linear objective; 483147 nonzeros.

CPLEX 12.6.1.0: mipdisplay 2
Contribution margin and share of the optimal solution in %

<table>
<thead>
<tr>
<th>Method</th>
<th>CAD</th>
<th>%</th>
<th>runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIP model</td>
<td>1,584,390</td>
<td>100</td>
<td>~154 min</td>
</tr>
<tr>
<td>Split heuristic</td>
<td>681,885</td>
<td>43</td>
<td>~5 min</td>
</tr>
<tr>
<td>LP relaxation heuristic</td>
<td>1,382,620</td>
<td>87</td>
<td>~9 min</td>
</tr>
</tbody>
</table>
Contribution margin and share of the optimal solution in %

<table>
<thead>
<tr>
<th>Contribution Margin</th>
<th>CAD</th>
<th>%</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIP model</td>
<td>1,584,390</td>
<td>100</td>
<td>~ 154 min</td>
</tr>
<tr>
<td>Split heuristic</td>
<td>681,885</td>
<td>43</td>
<td>~ 5 min</td>
</tr>
<tr>
<td>LP relaxation heuristic</td>
<td>1,382,620</td>
<td>87</td>
<td>~ 9 min</td>
</tr>
</tbody>
</table>

Revenue, profit and cost of the heuristics in %

<table>
<thead>
<tr>
<th>Heuristic</th>
<th>Revenue</th>
<th>Profit</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Split heuristic</td>
<td>43</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>LP relaxation heuristic</td>
<td>87</td>
<td>82</td>
<td>84</td>
</tr>
</tbody>
</table>
Overview

1. Problem description
2. Optimization approach
3. Heuristical solution approach
4. Literature
5. Numerical experiments
6. Conclusion and outlook
Conclusion and outlook

Conclusion

- Value chain from forest to customer satisfying all orders
- Bucking decision at forest in model
- Introduction of dry kiln planning on the tactical level
- Reduction of computational time by about 95% with heuristic approach
- 87% of optimal solution with heuristic

Outlook

- Including bin packing problem into drying constraint
 - Stacking restrictions
 - Placement restrictions
 - Heterogeneous batch loads
- Comparing Canadian case to an Austrian case
- Expanding the value chain to additional subsequent processing users
Conclusion and outlook

Conclusion

- Value chain from forest to customer satisfying all orders
- Bucking decision at forest in model
- Introduction of dry kiln planning on the tactical level
- Reduction of computational time by about 95% with heuristic approach
- 87% of optimal solution with heuristic

Outlook

- Including bin packing problem into drying constraint
 - Stacking restrictions
 - Placement restrictions
 - Heterogeneous batch loads
- Comparing Canadian case to an Austrian case
- Expanding the value chain to additional subsequent processing users
Thank you for your attention!