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A cornerstone in breeding and population genetics is the genetic evaluation procedure, needed to make important decisions on popu
lation management. Multivariate mixed model analysis, in which many traits are considered jointly, utilizes genetic and environmental 
correlations between traits to improve the accuracy. However, the number of parameters in the multitrait model grows exponentially 
with the number of traits which reduces its scalability. Here, we suggest using principal component analysis to reduce the dimensions 
of the response variables, and then using the computed principal components as separate responses in the genetic evaluation analysis. 
As principal components are orthogonal to each other so that phenotypic covariance is abscent between principal components, a full 
multivariate analysis can be approximated by separate univariate analyses instead which should speed up computations considerably. 
We compared the approach to both traditional multivariate analysis and factor analytic approach in terms of computational requirement 
and rank lists according to predicted genetic merit on two forest tree datasets with 22 and 27 measured traits, respectively. Obtained 
rank lists of the top 50 individuals were in good agreement. Interestingly, the required computational time of the approach only took a 
few seconds without convergence issues, unlike the traditional approach which required considerably more time to run (7 and 10 h, re
spectively). The factor analytic approach took approximately 5–10 min. Our approach can easily handle missing data and can be used 
with all available linear mixed effect model softwares as it does not require any specific implementation. The approach can help to miti
gate difficulties with multitrait genetic analysis in both breeding and wild populations.
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Introduction
Phenotyping is a critical process in any breeding program with the 
aim to improve the genetic level of the traits of interest. By accurately 
characterizing the traits, breeders can make informed decisions 
about which individuals to select in breeding populations to achieve 
expected increase in genetic merit shown as increased productivity, 
quality, vitality depending on the breeding objective. In the near fu
ture, many novel high-throughput phenotyping techniques could 
transform how traits are defined and recorded and could easily reach 
thousands. For example, remote sensing techniques, such as LiDAR 
(Light Detection and Ranging), which can capture detailed 3D struc
tural information about crops and trees including canopy height, 
width and architecture, disease status and condition to name a few 
(Jin et al. 2021). Another high-throughput example involves gene ex
pression data, where linear mixed effect models (LMM) have been 
used to identify sources of variation in human medicine studies of 
HIV infection (Yu et al. 2019), identifying genotype-by-environment 
(G × E) interactions in body mass index (Moore et al. 2019) and human 
brain regions (Trabzuni and Thomson 2014). In a plant breeding ap
plication, Runcie et al. (2021) showed how to use LMM to jointly ana
lyze grain yield and hyperspectral reflectance traits measured in 
wheat (Triticum aestivum) field trials.

Multitrait LMM analysis was introduced in quantitative genet
ics by Henderson and Quaas (1976) and encompass both genetic 
covariance component estimation and estimation of breeding va
lues (EBV). Compared to analyzing each trait separately, the ad
vantages of multitrait analysis are: 

• increased prediction accuracy of breeding values for un- 
phenotyped individuals,

• increased statistical power as available data are more effi
ciently used,

• increased parameter estimation accuracy by exploiting cor
relations between traits.

In particular, multitrait LMM analysis can provide more accurate 
estimations in the case of traits with a low heritability (i.e. a pro
portion of trait variation attributable to genetic factors), popula
tions of small size or if missing data are present (Persson and 
Andersson 2004; Guo et al. 2014). Accurate estimation of variance 
components and functional parameters, such as heritabilities and 
genetic correlations, is important because prediction error var
iances for estimated random effects increase as the differences 
between estimated and true values of variance components 
increase (Nishio and Arakawa 2022). Many studies have been 
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published comparing the performance of single and multiple-trait 
LMMs. For example, Alves et al. (2018) compared EBVs obtained 
from both multitrait and single-trait LMMs via the best linear un
biased predictor (BLUP) for tree height, DBH, and tree volume in 
Eucalyptus ssp. and predicted higher selection response with the 
multitrait BLUP analysis. Using simulations, Guo et al. (2014) showed 
that for traits with missing data, the EBVs obtained in the multiple- 
trait analysis resulted in more reliable genomic predictions.

Unfortunately, the number of parameters in multitrait LMMs 
grows exponentially with the number of traits due to added pair- 
wise correlation parameters, and the required computational ef
fort therefore grows even more because of the need to invert a 
(likely) large coefficient matrix at each iteration in the inference 
procedure, at least for most available algorithms, such as re
stricted maximum likelihood (REML) (Patterson and Thompson 
1971) or Bayesian blocked Gibbs sampling (Waldmann et al. 
2008). For example, often various convergence problems arises, 
and this can lead to unstable parameter estimates (Misztal 2008; 
Johnstone and Titterington 2009). In most practical applications, 
only a few traits can be analysed simultaneously, which is not op
timal as shared information via correlations is not used efficiently 
in the inferential procedure, causing biased parameter estimates, 
both for location (i.e. breeding values) and scale (covariance com
ponents and heritability). Methods that can circumvent this prob
lem would be sought after.

A number of alternative approaches that tries to circumvent 
the problems of standard multitrait LMM analysis have been sug
gested in the literature. Kirkpatrick and Meyer (2004) suggested 
the use of reducing the rank of the covariance matrix by principal 
component analysis (PCA) or by factor analytic (FA) models to im
prove multitrait LMM analysis. By directly estimate the leading 
principal components (PCs), most of the important information 
is kept while reducing the computational burden to estimate the 
covariance matrices (Kirkpatrick and Meyer 2004; Meyer 2007, 
2009). This can make the model easier to estimate and interpret, 
especially in advanced breeding programs where the full covari
ance structure is complex. Meyer (2007) showed how this ap
proach could be used for selection and multitrait LMM analysis 
of carcass traits for Angus cattle, where she suggested that the 
first seven of the PCs were sufficient to obtain estimates of breed
ing values without loss in the expected accuracy of evaluation. 
The approach has recently been shown to reduce computational 
burden in dense genomic marker-derived covariance matrices 
by Meyer (2023). However, a drawback is that there is an obvious 
loss of information when the rank of the covariance matrix is re
duced, information that could be important for some of the traits 
included.

The use of dimension reduction techniques to simplify the co
variance structure have been a popular choice in crop and forest 
tree breeding when estimating G × E interactions in multitrait 
LMM evaluations (Piepho 1997; Smith et al. 2001; Burgueño et al. 
2011; Li et al. 2017; Calleja-Rodriguez et al. 2019). In a review of G × 
E in forest tree breeding, Li et al. (2017) reviewed analytical 
methods for inferring G × E effects, including FA modeling, and 
its application in analysis of field trials of forest tree species in
cluding Pine spp, Eucalypt spp, Spruce spp, and Poplar spp. 
Calleja-Rodriguez et al. (2019) incorporated factor analysis to re
duce the rank of the covariance matrix which enabled the incorp
oration of 19 traits simultaneously into the multienvironment 
LMM analysis of Scots pine (Pinus sylvestris) field trials. As a result, 
they found that the main driver of detected G × E was differences 
in temperature sum among trial sites. Poupon et al. (2023) ana
lyzed the mean annual height increment, the mean annual 

diameter increment, and wood density in a series of field trials 
of European larch using FA models: the inferred genetic correla
tions between sites showed low to high G × E, with growth traits 
exhibited more G × E than wood density.

Another popular approach in various breeding scenarios is to 
perform canonical transformation to improve the performance 
of multitrait LMMs (Itoh and Iwaisaki 1990; Ducrocq and 
Chapuis 1997; Yang et al. 2022), in which a matrix decomposition 
technique is applied on both genetic and residual covariance ma
trices. After the transformation is applied, BLUP values can be 
computed for each trait using univariate LMMs. Then the ob
tained solution can be back transformed to the original scale, 
which thereby facilitates interpretation. Unfortunately, a typical 
requirement for canonical transformation is that covariance ma
trices either need to be known or ad-hoc estimated before the 
transformation: this limits the usefulness of the approach as un
certainties in the estimation procedure is not accounted for.

Instead of simplifying the covariance structure, a more direct 
approach would be to consider transforming the phenotypic 
traits. The use of PCA to simplify multitrait LMM analysis by oper
ating on the phenotypic trait records is not new and have previ
ously been used to perform genetic variance component and 
heritability estimation (Atchley and Rutledge 1980; Houle et al. 
2002). Chase et al. (2002) used PCA of skeletal variation in a popu
lation of Portuguese water dogs to reveal groups of traits defining 
skeletal structures and associate it with quantitative trait loci 
(QTLs). A related PCA-based approach has been proposed for link
age analysis (Ott and Rabinowitz 1999) and genome-wide associ
ation analysis (Aschard et al. 2014; Zhu et al. 2018). The 
advantages in breeding value and genetic variance component in
ference of using PCA is that it can handle a large set of traits by 
transforming them into orthogonal PCs which can be seen as trait 
combinations with similar characteristics that cannot be mea
sured directly. As each PC is orthogonal, they can be analyzed in
dependently with univariate models. This procedure would be 
very fast and converge very quickly as opposed to multivariate 
analysis of a large set of traits, especially when dealing with unba
lanced longitudinal data (Adjakossa et al. 2016) or with large sets 
of predictors (Lozano et al. 2023). One problem with this approach 
is that it cannot handle missing data, at least not the standard sin
gle value decomposition (SVD) approach, which restrict its use in 
general breeding applications. Another drawback is that even 
though the PCs are orthogonal to each other in the phenotypic 
space, genetic and environmental values are not necessarily un
correlated between PCs. Thus, by using univariate analyses of 
the PCs might reduce accuracy of obtained EBVs as compared to 
when full multivariate analysis of PCs are used. Thus, more effort 
into using PCA directly on the phenotypic profiles which includes 
missing data are warranted and to further investigate the effects 
of nonzero genetic covariances between PCs.

A similar approach using FA modeling, which operates on the 
response matrix, have recently been proposed (Runcie and 
Mukherjee 2013; Runcie et al. 2021). By introducing latent vari
ables via a mixed effect factor model, all sources of correlation 
among the traits can be accounted for and corresponding univari
ate independent LMMs could be analyzed. With this approach, 
MegaLMM (Runcie et al. 2021), three plant breeding data sets 
with tens-of-thousands of traits were analyzed, and obtained re
sults showed improved prediction accuracy of genetic values 
and improved computational speed compared to results obtained 
by traditional methods. As a model-based approach it can handle 
missing data, but it needs a special software implementation 
which limits its general use.

2 | J. Ahlinder et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/14/12/jkae228/7828751 by guest on 25 June 2025



Here, we aim at improving (co)variance component and breed
ing value estimation of large-scale phenotyping efforts by re- 
introducing PCA dimension reduction technique to obtain re
duced space traits. This suggested method can easily be analysed 
with standard univariate LMMs. In doing so, we circumvent the 
problems of convergence in the REML analysis to estimate covari
ance components, at a fraction of the required computational 
time, compared to a multivariate analysis. A novelty in this pro
posed approach is how missing data can be handled efficiently 
in the ordination step by utilizing a model-based PCA for imput
ation. Two typical forest tree data sets are used to highlight the 
performance of the approach: one Scots pine field trial included 
in the north Swedish breeding program and one Loblolly pine 
breeding population with traits scored in several trials. Because 
all data were preadjusted for trial-specific design and environ
mental effects, the continuous nature of the adjusted data facili
tated the PCA analysis.

Materials and methods
Multitrait LMM
Under Gaussian assumptions, the multivariate version of the 
LMM was proposed by Henderson and Quaas (1976), and can be 
written as:

y = Xb + Za + e, (1) 

where y is the response vector containing each of m traits repre
sented sequentially for n individuals in a single column vector 
(i.e. of size nm × 1). This is obtained by taking vec-operation of 
the multivariate observation matrix of dimension n × m. X is a 
nm × pm design matrix for fixed effects (with ones, zeros or regres
sion measurements as their elements) in p fixed effects in m traits. 
This is a block-matrix with m blocks of size p × n. Similarly, b re
presents the fixed-effects coefficient vector with dimension pm, 
Z is the design matrix for random effects with dimension 
nm × nm, a denotes the random-effects vector (i.e. polygenic addi
tive genetic effects) with dimension nm, e represents the error vec
tor (i.e. residuals) of size nm. For a and e, the associated covariance 
matrices G and R needs to be specified:

a =

a1

a2

..

.
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⎛

⎜
⎜
⎝
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⎟
⎟
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Now, let σ2
aii be the genetic variance of trait i, and σaij is the genetic 

covariance between two traits i and j within an individual, the gen
etic covariance matrix G0 can be defined as:
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⎟
⎠
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For the residuals, the covariance matrix R has a similar definition 
as G, but uses the identity matrix (assuming homoscedasticity) in 
place of the additive genetic relationship matrix. Furthermore, the 
random effects are assumed to follow a multivariate normal dis

tribution a ∼ MVN(0, G0 ⊗ Aσ2
a), where G0 is a m × m genetic co

variance matrix, A is a n × n additive genetic relationship matrix, 

σ2
a is the additive genetic variance component, and ⊗ is the 

Kronecker product. The residuals are assumed to be multivariate 

normally distributed as e ∼ MVN(0, R0 ⊗ Iσ2
e ), where R0 is a m × m 

within individual residual covariance matrix and I is an n × n iden
tity matrix, viz., between individual residual covariance matrix and 

σ2
e is the residual variance component.

Standard singular value decomposition-based 
PCA
PCA reduces the dimensionality of data while preserving its essen
tial information (Hotelling 1933; Wold et al. 1987; Jolliffe 2002). PCA 
is computed for n × m multivariate observation matrix Y, where n is 
the number of individuals and m traits. If n ≤ m, it is practical to cal
culate it for n × n matrix of YY′. Otherwise, it is calculated for m × m 
matrix of Y′Y. Let us represent a scaled symmetric covariance ma
trix YY′ as a product of two orthonormal matrices Q containing or
thogonal unit vectors as columns and one diagonal matrix D such 
as YY′ = QDQ′. Orthogonality of Q means that Q′Q = I. D is the 
square diagonal matrix with the singular values of Y on the diag
onal. Now, if we multiply both sides from left and right with Q′

and Q, respectively, we obtain Q′YY′Q = D = diag(λ1, λ2, . . . , λp), 
where the right hand side of equation contains eigenvalues of ma
trix YY′ in the diagonal in the ascending order λ1 ≥ λ2 ≥ . . . ≥ λp. This 
decomposition is related to singular value decomposition (SVD) 
(Golub and Van Loan 2013). For PCA, the singular values are the 
square roots of the eigenvalues of the covariance matrix, and 
both eigenvalues and singular values provide insights into the 
phenotypic variability and importance of different components (ei
genvectors or basis vectors) in transforming and summarizing the 
observed phenotypic profiles.

Model-based PCA
PCA is a linear transformation of the covariance matrix of the data 
to the space where different directions are independent. As an al
ternative to the algorithmic-based exact PCA is to fit the trans
formation model to the data statistically using a probabilistic 
model-based approach (i.e. observed data points are generated 
from a probabilistic distribution) (Tipping and Bishop 2002). This 
of course requires distributional model assumptions which in
crease transparency but makes the transformation somewhat 
noisy. One advantage is the possibility to include handling of 
missing values as part of the hierarchical model. Oba et al. 
(2003) suggested a Bayesian model-based version of PCA, or 
BPCA, which simultaneously fits a probabilistic model and infer 
latent variables (i.e. PCs). The main step that include the missing 
value imputation in BPCA is the PC regression step: for the i:th trait 
yi =

􏽐 p
l=1 xlwl + ϵ where wl is the l:th principal axis vector and xl is 

the linear coefficient to be estimated (also called the factor score), 
p is the total number of components used, and ϵ is the residual. 
The goal is to minimize the sum of squared errors ‖ϵ‖2 for Y (i.e. 
for all traits) by using PCA. As we have missing data, the principal 
axis matrix W can be divided into a complete and missing data 
part: W = (Wobs, Wmiss). The factor scores x are then obtained by 
minimizing the residual error for the observed data yobs, and 
then used to obtain ymiss = Wmissx. Oba et al. (2003) used 
Bayesian inference, via a variational Bayes algorithm (Bishop 
2006) to estimate model parameters and missing records. 
Interested readers are invited to see Oba et al. (2003) for further de
tails of the missing data imputation steps.

Implementation details
Standard SVD-based PCA were performed using the prcomp func
tion from the R package stats (R Core Team 2022) with default 
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settings. We used the R package pcaMethods (Stacklies et al. 2007) 
to apply BPCA to impute missing data and perform ordination by 
using the pca function with parameters maxSteps = 10,000 and 
threshold = 1e − 06. In addition, we also used the missForest R 
package (Stekhoven and Buehlmann 2012) as a comparison of 
the effect of missing data imputation. To compare ordinations 
(i.e. loadings) on different imputed data in the Loblolly pine ex
ample, Eucledian distance of the loading matrices were first calcu
lated (dist function) and then compared using a Mantel test 
(mantel function) available in the Vegan R package (Oksanen 
et al. 2022). Contribution bar plots were created using the R pack
age factoextra (Kassambara and Mundt 2020).

ASReml-R (Butler et al. 2023) was used to infer genetic para
meters both in the standard bivariate approach and in the univari
ate analysis of PCs, with the workspace parameter increased to 
4,096 mb, and the ai.sing parameter set to true (which tells 
ASReml-R to continue the fitting process even if it encounters sin
gularities). The inverse of the additive genetic relationship matrix 
was calculated using the ainverse function in the ASReml-R 
package.

To infer the association between selection index and PCs, we 
back-transformed obtained EBVs for the PCs to the original pheno
typic scale by Ĝorig = ĜEBVΛ′ + μorig, where ĜEBV is the obtained EBV 
for each PC (column) for each individual (row) of size n × p, Λ is the 
rotation matrix of eigenvectors of dimension m × p, μorig is the ori
ginal trait mean vector of length m. Note that if p = m, i.e. there is 
no dimension reduction performed, the back-transformation is 
exact and no information is lost. Rank lists were compared using 
association test between paired samples with Kendall’s τ method 
implemented in the cor.test function. The null-hypothesis tested 
was if the true tau was equal to 0 (i.e. no association).

All LMM software’s tested on the first three PCs of the Loblolly 
pine data were used with default settings. As alternative to the 
PCA approach, we used factor analysis via the MegaLMM imple
mentation (Runcie et al. 2021) with five chains totaling 1,500 itera
tions and 4 chains sampling from the obtained stationary 
sampling distributions collecting 125 posterior draws per chain to
taling 500 points. The number of latent variables used was set to 
10. MegaLMM required the additive genetic relationship matrix 
which was calculated using the nadiv R package (Wolak 2012).

To perform clustering analysis of the loadings, Ward’s method 
was used in conjunction with Euclidean distance via the hclust 
function in R, stats package. All figures were produced using the 
ggplot2 R package (Wickham 2016).

To calculate standard deviation of the narrow-sense heritabil
ity based on estimated variance components and their standard 
deviations (StdDev), we made use of the following Taylor’s ap

proximation: StdDev(C) = A
B ·

����������������������������������

( StdDev(A)
A )2 + ( StdDev(B)

B )2
􏽱

assum

ing absence of co-variation between A and B, where in our case 

A = σ̂2
A, and B = (σ̂2

A + σ̂2
E). All StdDevs were estimated in respective 

software bar the rrBLUP package which required additional 
subsampling.

For further details including R code and data, please visit 
https://github.com/jonhar97/Reduced_phenotype_MME.

Analysed Scots pine data
The Scots pine (Pinus sylvestris L.) field trial was designed to test the 
performance of available genotypes in seed orchard 412 
Domsjöänget. The trial was established in 1971, located in Vindeln, 
Sweden 64.18◦N, 19.34◦ E and consisted of 206 full-sib families ob
tained from controlled crosses of 52 seed orchard parents and five lo
cal stand seed sources, totaling 8,160 plants at 3.95 hectare of land. 

The plants where spaced at 2.2 × 2.2 meter squares in single tree 
plots. The trees were measured after 10, 14, 26, and 47 growing sea
sons for production and quality related traits (Table 1, 
Supplementary Fig. 1). The trial was thinned after the 26 year meas
urement. Previous studies have reported moderate heritability esti
mates for tree height and diameter (Ericsson 1999; Finley et al. 
2008; Hallander and Waldmann 2009). We used two alternative se
lection indices with equal weight to all included traits at age 26 (i.e. 
close to final evaluation of the trial in north of Sweden): 

• production using height (Hjd_26) and diameter (Dia_26)
• production and tree stem quality using equal weights for 

height (Hjd_26), diameter (Dia_26), branch angle (Gvin_26), 
and (negative) branch diameter (Gdia_26)

To preadjust phenotypic records, we followed e.g. Calleja- 
Rodriguez et al. (2019) by using the following set of predictors: 

• fixed effect: intercept,
• random effects: plot, rows within plot, columns within plot,
• residual covariance structure: AR1 autocorrelation term on 

rows and columns.

Analysed Loblolly pine data
The loblolly pine (Pinus taeda L.) breeding population dataset was 
published by Resende et al. (2012), which originated from con
trolled crosses of 32 parents (22 field- selected F0 plus trees and 
10 selected F1 progeny) representing a wide range of accessions 
from the southeastern USA. A subset of 926 genotypes of the F2 
offspring was selected for extensive phenotyping in three repli
cated studies for growth, developmental, and disease-resistance 
traits measured at 1, 2, 3, 4 and 6 years Table 2. We defined selec
tion index inspired by Isik and McKeand (2019): 

• production index with equal weights on EBVs for height and 
diameter at age 6

• production and disease susceptibility index with EBVs for 
height, diameter, and (negative) rust infection at equal 
weight

• production and wood quality with EBVs for height, diameter, 
stiffness, and density at equal weight

No economic data were used in the calculation of selection indi
ces. See e.g. Cumbie et al. (2012), Hayatgheibi et al. (2017) and 
Fundova et al. (2018) for further details about construction of eco
nomic weights in index selection for various pine species.

Results
PCA-based multitrait LMM analysis of a Scots pine 
field progeny trial
Accurate EBV ranking
Two subsets were extracted from the original data of 8,100 trees to 
check the robustness and performance of the PCA-based method: 
one smaller subset of 1,685 tress scored for 15 traits without missing 
data, and a larger subset of 6,044 trees measured with 10 traits with 
13.3 % of missing data (Supplementary Fig. 1, Table 1). Prior to the 
analysis, all data were spatially adjusted using an first order spatial 
autoregressive (AR1) model as suggested by Dutkowski et al. (2002)
to remove micro-environmental variation. First, we focus on the 
analysis of the complete 15 trait subset to compare the approaches.

The PCA revealed strong clustering tendencies among the re
corded traits, where the first PC differentiated between produc
tion and outer tree quality traits, while retaining a large chunk 
of the total phenotypic variation (Figs. 1–2). In total, 15 PCs were 
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used to explain all phenotypic variation, where the first three 
components explained 35.6, 13.7 and 8.8 % of the variation (cumu
lative: 58.1 %). This manifested as a strong linear correlation 

between the first component and multiple production traits 
such as height and diameter at different ages (Fig. 2). To confirm 
the grouping of the traits using the obtained loadings in the 

Table 1. Traits measured in the Scots pine progeny trial.

Trait Age Trait type Number of  
observations

ĥ
2
1,685 ĥ

2
6,044 Additional info

Dia_14 14 Production 2,765 0.077 
(0.035)

Diameter at breast height

Dia_26 26 Production 5,244 0.120 
(0.041)

0.147 
(0.032)

Diameter at breast height

Dia_47 47 Production 4,302 0.242 
(0.055)

0.208 
(0.040)

Diameter at breast height

Ftop_47 47 Quality 4,425 0.047 
(0.028)

0.041 
(0.017)

Number of top shoots

Gant_14 14 Quality 2,767 0.236 
(0.055)

Number of branches per whorl at age 14: The sum of the whorls 
closest below and above 130 cm.

Gdia_26 26 Quality 5,313 0.372 
(0.067)

0.320 
(0.052)

Average branch diameter compared to surrounding trees

Gdiagr130_14 14 Quality 2151 0.131 
(0.045)

The diameter of the largest branch in the branch whorl closest to 
130 cm above ground

Gvin_26 26 Quality 5,313 0.382 
(0.066)

0.347 
(0.052)

Branch angle compared to surrounding trees

Gvingr130_14 14 Quality 2,148 0.479 
(0.071)

The angle of the largest branch in the branch whorl closest to 130  
cm above ground

Hjd_10 10 Production 6,027 0.112 
(0.040)

0.191 
(0.037)

Total tree height

Hjd_14 14 Production 5,506 0.262 
(0.057)

0.249 
(0.043)

Total tree height

Hjd_26 26 Production 5,248 0.573 
(0.072)

0.369 
(0.055)

Total tree height

Hjd_47 47 Production 4,023 0.390 
(0.066)

0.323 
(0.052)

Total tree height

Sprant_14 14 Quality 2,898 0.084 
(0.035)

Top shoot count

Sprant_26 26 Quality 5,316 0.110 
(0.040)

0.147 
(0.032)

Top shoot count

SEs are within parenthesis. Estimates of narrow-sense heritabilities for the 1,685 and 6,044 tree subsets are denoted as ĥ2
1,685 and ĥ2

6,044, respectively.

Table 2. Traits measured in the Lololly pine breeding population of 861 genotypes.

Test Age Trait Trait type ĥ2 Additional info

Canker 1 LesionUF Quality – Removed because of high precentage missing data
Nassau 1 HT Production 0.337 (0.093)
Nassau 2 CWAC Production Crown width across the planting beds
Nassau 2 CWAL Production 0.544 (0.118) Crown width along the planting beds
Nassau 2 HT Production 0.646 (0.125)
Nassau 3 DBH Production 0.589 (0.123)
Nassau 3 HT Production 0.570 (0.121)
Nassau 4 DBH Production 0.538 (0.118)
Nassau 4 HTLC Production 0.424 (0.102) Total height to the base of the live crown
Nassau 6 BA Quality 0.510 (0.111) Branch angle average
Nassau 6 BD Quality 0.223 (0.072) Average branch diameter
Nassau 6 BLC Production 0.546 (0.118) Basal height of the live crown
Nassau 6 CWAC Production 0.553 (0.118) Crown width across the planting beds
Nassau 6 CWAL Production 0.409 (0.102) Crown width along the planting beds
Nassau 6 DBH Production 0.558 (0.120)
Nassau 6 HT Production 0.456 (0.111)
Rootnum 10 Rootnum Production 0.087(0.041) Root number
Rootnum 10 Rootnumbin Production 0.269(0.080) Presence or absence of roots
Rust 1 Gall_vol Disease susceptibility 0.116(0.047) Susceptibility was assessed as gall volume
Rust 1 Length Disease susceptibility 0.157 (0.057)
Rust 1 Rustbin Disease susceptibility 0.190(0.064) Presence or absence of rust
Rust 1 Width Disease susceptibility 0.177(0.061)
Woodall 4 C5C6 Quality 0.190 (0.066) 5- and 6-carbon sugar content
Woodall 4 Density Quality 0.114(0.048) Wood-specific gravity
Woodall 4 LateWood Quality 0.165 (0.060) Latewood percentage at year 4
Woodall 4 Lignin Quality 0.087 (0.041) Lignin content
Woodall 5 StiffnessTree Quality 0.318 (0.087)

SEs are within parenthesis. Estimates of narrow-sense heritability for each trait is denoted ĥ2.
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PCA, we performed hierarchical clustering of the loadings which 
showed the same partition of traits into production and quality 
groups divided at the highest hierarchy level (Supplementary 
Fig. 2).

The REML analysis on the original traits was carried out in sev
eral steps to make the model converge: a) a univariate REML ana
lysis to estimate good starting values of the variance components, 
b) pairwise bivariate REML analysis of all trait combinations to ob
tain estimates of genetic and residual covariances between traits 
(i.e. to fill entries in the R0 and G0 matrices, and c) a full multitrait 
mixed model analysis with fixed scale parameters via G0 and R0 

matrices obtained in step b). Thus we were using the fixed para
meters to estimate breeding values for all traits simultaneously. 
The estimated correlations and narrow-sense heritability (ĥ2) for 
all traits is shown in Fig. 3 for both REML analyses of original 

and transformed traits. The range for ĥ2 the original traits varied 
from 0.04 (Multiple stems year 47) to 0.57 (Height year 26) 
(Table 1). The computational time required for these steps where 
a) 2.51 (0.13) seconds, b) 94.3 seconds (individual runs ranging 
from 0.17 to 2.57 seconds, mean 0.89 (0.61) seconds), c) the model 
did not converge after 10,000 iterations (i.e. the log-likelihood 
maximum was not reached), although we deemed the model 
found a near optimal solution as the difference in the 
log-likelihood did not change in its third decimal across 10 itera
tions: as each iteration took 2.5–3.9 seconds, the total required 
time in the c) step was 7 h, and 7 min.

Then, univariate REML analyses of all 15 PCs as response vari
ables were performed as comparison, and in all cases converged 
after 10 iterations in less than a second per PC. Obtained ĥ2 

for all PCs are shown in Fig. 3b, and ranged between 

a

b

Fig. 1. PCA on the 1,685 tree subset with 15 traits measured: a), The loadings of PC one and two with trait categories colored, b) loadings of PC one and 
three.
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ĥ2
PC8 = 0.061(0.032) and ĥ2

PC2 = 0.564(0.072), with SE within paren
thesis. As comparison, the MegaLMM analysis took on average 7 
min on the same dataset.

From a breeder’s perspective, the most crucial information is 
the ranking of EBVs and how one can utilize this information to 
perform selection and crossing (or mating) decisions. We defined 
two selection criteria: one production based with 50% EBVs for 
height and diameter at breast height at age 26, and one outer 
tree quality based with 50% production, 25% branch angle and 
negative 25% branch diameter, all measured at age 26. As a com
mon breeding objective goal of forest trees is to increase the prod
uctivity, we included both height and diameter in both indices. In 
addition, outer tree quality traits, such as branch angle and branch 
diameter, will impact wood quality and their improvement are 
also important long term breeding goals. To make index based on 
PC traits comparable, we back-transformed EBVs of the PCs to 
EBVs on the original trait scale. Then we computed two indices 
(Fig. 4a), where most PCs contributed bar PCs 4 and 5 which contrib
uted very little to both indices, ensuring that all genetic variation 
was kept in the index, minimizing information loss. Correlations 
between PCA derived indices and traditional indices was highly 
significant: r = 0.954 P < 0.0001 and r = 0.963 P < 0.0001, for pro
duction and quality indices of all 861 selection candidates (Figs. 4b
and 5). In all, the correlation of obtained rank of the top 50 indivi
duals based on selection index values from standard and PCA 

analysis were positive and significant (Figs. 4c and 5): Kendall’s 
τ = 0.438, P < 0.0001, and τ = 0.437, P < 0.0001, for production 
and quality index, respectively. Furthermore, correlations of the 
obtained selection indices of the PCA approach to the reference 
multivariate method agreed closely to those obtained by 
MegaLMM (Fig. 5 top panel), while the top ranked part were more 
similar between PCA and reference than between MegaLMM and 
reference. This result is supported by the number of overlapping in
dividuals in the top 50 rank lists where PCA and reference-based 
ranking shared 11 and 16 genotypes for production and quality in
dex respectively, which was not present among the top 50 geno
types obtained by MegaLMM (Fig. 4d, Supplementary Fig. 3). 
Thus, although not identical, the rank lists resembled each other 
well in the top 50 rank, and similar response to selection is ex
pected, at a fraction of the required computing effort.

Even though obtained PCs are orthogonal at the phenotypic le
vel, it is not necessary true at genetic and residual levels. To ad
dress this, we performed a full multivariate analysis of all PCs to 
investigate the correlation pattern using both ASReml and 
MegaLMM. In the REML analysis, logL coverged but not the covari
ance components, suggesting difficulties in the inference proced
ure to obtain reliable estimates, with estimates varying 
considerably for both genetic and residual correlations. In the 
Bayesian FA model analysis, obtained estimates were around 
zero for all combinations of PCs (results not shown). Thus, 

a b

c d

Fig. 2. PCA on the 1,685 tree subset with 15 traits measured: a) proportion of phenotypic variation explained by each of the 15 first PCs, b) scatter plot of 
PC1 scores and highest correlated trait values (Dia_26, Hjd_10, and Hjd_26), c) the contribution of the original traits to phenotypic variation in PC1, and d) 
the contribution of the original traits to phenotypic variation in PC2.
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covariance estimates conflicted between methods, but this issue 
seem to have little influence in practice regarding the rank lists 
in this example.

Missing data can be efficiently handled
Standard SVD-based PCA (SVD-PCA) cannot handle missing data. 
As data collected from realistic field trials would typically contain 
at least some proportion of missing observations, in particular if 
many traits have been measured. To check the effect of missing 
data on PCA-based multitrait selection, we selected a subset of 
6,044 trees scored for ten traits. The data contained 13.3% missing 
data in total ranging from 17 to 2021 missing observations for tree 
height at age 10 and age 47, respectively. The Bayesian PCA meth
od (BPCA) was used to impute missing observations with nine PCs 
explaining 98.3% of the total variation.

To rule out that the imputed data had any impact on the gen
etic parameter estimates obtained by the REML method, we ana
lyzed the data from 6,044 individuals with 10 traits using the 
pairwise bivariate REML approach described earlier. We focus on 
the trait with the largest proportion of missing data (33.4%), tree 
height at age 47, as the worst-case scenario. The average differ
ence in correlations to all other nine traits was 0.040 (0.035), 
with standard deviation within brackets. Correlations with some 
of the traits were overestimated with the imputed data, such as 
multiple stems and diameter at age 47, with 0.094 and 0.081, 

respectively. Obtained narrow-sense heritability estimates for 
the trait were h2

imputed = 0.323(0.052) and h2
NA = 0.264(0.044). 

However, this difference had little impact on EBV and ranking of 
trees as rImp,NA = 1.0, P = 2.2 × 10−16, probably because informa
tion is shared across correlated traits with much less fraction of 
missing data.

Taken together, we used imputation via BPCA to keep as much 
information as possible and there were only slight differences be
tween the BPCA and SVD–PCA approaches on the Scots pine pro
geny trial data (results not shown). In practice, both methods 
could be used interchangeably without changing the rank of trees. 
The need for imputing missing observations might be a bigger 
concern when it comes to estimating scale parameters but seems 
to be less important when considering rank of individuals based 
on EBV.

PCA allows for rapid multitrait analysis in a 
Pinus taeda pedigree
In total, 27 traits were recorded for 926 individual genotypes in the 
South eastern USA breeding program of Loblolly pine (Table 2). As 
missing data were present, we first removed traits with >40%

missing data, which resulted in the removal of the trait 
LesionUF_1 (i.e. damage to the tree that is caused by an unidenti
fied factor after one growth season). In addition, individuals with 
>25% missing data were removed, resulting in 861 pedigree 

a

c

b

Fig. 3. REML pairwise trait analysis on original traits and on PCA transformed traits (i.e. PCs) showing: a) ĥ2 of the original 15 traits using both the bivariate 
and univariate approaches with SE displayed as vertical lines, b) shows obtained ĥ2 of the 15 PCs analysis, and c) shows the pair-wise estimated 
correlations obtained with REML between all 15 traits.

8 | J. Ahlinder et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/14/12/jkae228/7828751 by guest on 25 June 2025



member available for the multitrait analysis. Missing data were im
puted using the missForest method. SVD-PCA analysis of all 26 PCs 
was performed explaining 100% of the total phenotypic variation. 
The PCA analysis of the 26 traits revealed clustering tendencies 
of the loadings for similar trait types (Fig. 6a and b), with the first 
PC explaining 31.4% of the phenotypic variation, while the second 
and third explained 14.3% and 8.1% respectively. The first PC sepa
rates the production traits from the tree quality and disease sus
ceptibility traits, albeit with some of the traits mixed (i.e. at PC1 
values close to zero), such as branch diameter year 6 (BD_6), and 
the total tree height to the base of the live crown (HTLC_4). The se
cond PC clearly separates production and tree quality traits from 
the disease susceptibility traits. The third PC separated crown 
width traits and branch diameter with various tree height traits.

To test the impact of missing data imputation method, we also 
used the BPCA method and simple trait means to complete 
the data set and performed standard SVD-PCA (Supplementary 
Fig. 4). The BPCA explained 97.1% using 20 PCs with the first 
PC explaining 31.8%, while the missForest explained 98.7% in 
the first 20 PCs while the first PC explained 31.0%. When compar
ing the scores for the first 20 PCs in both BPCA and missForest im
puted data resulted in highly correlated ordinations (Mantel’s 
r = 0.545, P = 0.001). Using trait means as imputation resulted in 

a very similar ordination as the missForest imputation SVD-PCA 
(results not shown). Thus, the method of imputation had relative
ly small impact on the resulting ordinations, although using the 
BPCA seemed to be advantageous if the first PC is of main interest 
(i.e. production traits).

To examine downstream results (i.e. rank lists) of PCA and 
multivariate LMM approaches, we followed the same procedure 
as with the Scots pine example. First, to obtain the starting values 
of the bivariate REML analyses for estimating variance compo
nents, 26 univariate REML analyses were performed. In most 
cases, the model converged after 4–7 iterations, but in some cases, 
however, resulted in Log-likelihood not converging, and that some 
components changed by more than 1% on the last iteration. Each 
run was very quick, less than a second for all 26 traits. In total, 325 
bivariate REML analyses were required to cover all trait combina
tions to estimate the trait covariance matrix. These analyses took 
62 seconds in total, with very mixed convergence statistics ran
ging from 4 to 704 iterations. Finally, the full multivariate analysis 
lasted for 12 h 22 min to run 3,000 iterations until convergence, 
where each iteration took between 11 and 18 seconds. As compari
son, univariate PCA LMM took less than a second for each PC and 
converged after a few iterations. To examine the genetic and re
sidual correlations between the first 10 PCs a full multivariate 

a b

c d

Fig. 4. Comparison of tree rank based on estimated breeding values (EBVs) for PCA and standard approaches: a) The contribution of individual PCs to the 
selection index corresponding to a traditional model both for quality and production-based indices, b) difference in rank of individuals where the rank of 
EBV based on analysis of original trait is the reference (x-axis) and the corresponding rank based on analysis of PC score traits (y-axis) for two selection 
index, c) the same rank differences, but zoomed in on the first 50 reference ranked individuals, and the color corresponds to the two selection indices. 
Panel d) shows the number of common genotypes among top 50 ranked trees of the production index.
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model analysis were performed with all obtained covariances (i.e. 
both genetic and residual) was 0, suggesting a total absence of cor
relations. This finding was confirmed by the MegaLMM analysis of 
all PCs. MegaLMM analysis of the 26 original traits took 5.3 min on 
average over 10 repetitions.

To compare rank lists, we created three selection indices: one 
production-based index with 50% height and 50% diameter 

EBVs, one tree quality index combining height and diameter 
with tree density and wood stiffness all weighted equally, and fi
nally a disease susceptibility index with height, diameter, and fu
siform rust presence. We used back-transformation to combine 
the PCs which best mimics these indices (Fig. 7a), where all 26 
PCs contributed to the indices implying that all available pheno
typic variation was utílized. Obtained EBVs of the indices with 

Fig. 5. Comparison of calculated correlations obtained for analyses with MegaLMM, PCA, and traditional multivariate approaches. Top row shows the 
result on the Scots pine data example and the bottom row shows the result of the Loblolly pine case study. Left column shows Kendall’s τ based on top 50 
rank of indices and right column highlights Pearson product moment estimator based on index of the entire population. Obtained test significance is 
highlighted as stars on top of the corresponding bar for *P < 0.05 and **P < 0.01.
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univariate PCAs LMM analysis were highly correlated to 
the EBVs of the full multivariate analysis for production index, 
r = 0.933, P < 0.0001, for quality index, r = 0.906 P < 0.0001, 
and for disease resistance index, r = 0.935 P < 0.0001. 
Unsuprisingly, the rank lists of the top 50 trees obtained with PCA 
and traditional approach resembled each other for all three selec
tion indices considered (Fig. 5 bottom panels, Fig. 7b): production 
index, Kendalls τ = 0.471, P < 0.0001, quality index, Kendalls 
τ = 0.380, P = 0.0001, and disease susceptibility index, Kendalls 
τ = 0.367, P = 0.0002. These results suggest that similar rank lists 
can be obtained with the PCA approach for three different indices 
but at a fraction of the required computing time. Factor analysis 
resulted in very similar correlations of EBV and rank lists for all in
dices, and equal number of genotypes overlapping with the refer
ence rank lists as obtained with the PCA method, with 28, 24 and 

28 genotypes selected with all methods for quality, production 
and disease index respectively (Fig. 5 bottom panels, Fig. 7b–d).

To visualize the portability and flexibility of the approach, we 
tested a variety of available software implementations (Table 3). 
Thus, depending on the situation and requirement of the analysis 
and data, an analyst can choose among a large smorgasbord of 
alternatives.

Discussion
Multitrait LMM analysis to estimate heritabilities, genetic correla
tions and breeding values is the cornerstone of breeding programs 
for improving yield, disease resistance and quality in animals, 
crops, and forest trees. Unfortunately, if many traits are consid
ered jointly, this analysis is far from straight forward to perform 

a

b

Fig. 6. Multitrait LMM analysis on the 26 selected traits in the Loblolly pine dataset. a) Clustering of traits via PCs one and two colored with their respective 
trait category. The number on the axis labels corresponds to the percentage of phenotypic variation explained. b) PC one and three.
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due to several reasons, including problems with convergence to a 
stable solution, required computational time, and precision in 
parameter estimates. To overcome this hurdle, we propose the 
use of PCA to reduce the dimension of the phenotypic response 
variables. We show the benefit of the approach on two data set 
of Loblolly and Scots pine pedigrees, with a large number of traits 
recorded at multiple time points. The PCA separated trait groups 
and REML analysis resulted in a 1,000-fold reduction in computa
tional time as compared to traditional multitrait analysis. 
Because obtained PCs are orthogonal (to each other), the need 
to use multivariate analysis is diminished. The individual 
univariate REML analyses converged after 10 iterations. Rank 
lists based on estimated breeding values (EBV) obtained from 
traditional and PCA approaches correlated strongly among the 

different selection indices used (i.e. production, quality and dis
ease resistance).

In breeding applications, it is not uncommon that the breeding 
objective traits cannot be measured directly, for example land 
economic value per hectare at the age of harvest in forest tree 
breeding programs (Burdon and Klápště 2019). In such cases, sev
eral traits are measured that hopefully correlate well with the 
breeding objective traits. This is typical in breeding of species 
with long generation turnover, such as forest trees or some live
stock animals. In these situations it could be more profitable to ra
ther consider phenotypic profiles than individual traits with 
unclear connection to future breeding objective traits as dimin
ishing age—age correlations reduces the response to selection 
(Jansson et al. 2003; Dong et al. 2019; Lee et al. 2024). As some traits 

a b

c d

Fig. 7. Multitrait LMM analysis on the 26 selected traits in the Loblolly pine dataset: a) Selected PCs for the three different selection indices and their 
respective contributing proportion to the index. b) common genotypes among top 50 ranked trees for quality index, c) common genotypes among top 50 
ranked trees for production index, and d) common genotypes among top 50 ranked trees for disease index.
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are very expensive to measure, such as destructive sampling like 
meat quality traits in beef cattle (Warner et al. 2010), physiological 
traits in woody plants including fire-induced irreversible xylem 
damage and low temperature-induced tissue freezing (Li et al. 
2023), and wood (sawn timber) quality traits (Fukatsu et al. 2015; 
Fundova et al. 2020), phenotype profiles could be measured and 
analysed with PCA to incorporate different types of traits jointly.

In Swedish forest tree breeding programs, there are currently 
multiple traits in assessment schemes including measurements 
on tree growth, adaptation and external wood quality. Similar 
characteristics have been incorporated into other tree breeding 
programs such as the fourth round of selection in the Loblolly 
pine breeding program in southeastern USA (Isik and McKeand 
2019) and Douglas-fir breeding program in New Zeeland 
(Dungey et al. 2012). It is, however, expected that in the future 
the number of traits in selection will increase to further mitigate 
the effects of climate change on forest tree resilience and to aim 
for more adapted trees. Adaptation traits can be such as resist
ance to diseases and different pests (Brar et al. 2015; Hall et al. 
2024), spring frost tolerance (Lundströmer et al. 2020), drought tol
erance (Hayatgheibi et al. 2021) and fecundity (Li et al. 2023). 
Furthermore, considering internal wood quality in terms of 
wood density measurement as a selection trait is under research 
development and is expected to have greater impact on breeding 
objectives in the future. Several studies have shown unfavorable 
genetic correlation between tree growth and wood density which 
should in that case take into account in breeding to maintain ac
ceptable level of this trait for production purposes (Fundova et al. 
2018, 2020). Hence, the use of PCA-based trait evaluations could 
drastically improve efficiency of multiple trait analysis, as both 
the PCA itself and the following univariate analyses can be con
ducted with great reduction in computing time without the loss 
of phenotypic and genetic variation.

In large-scale breeding evaluation systems, such as those pro
vided by Interbull in dairy cattle (https://interbull.org/index), 
Treeplan in forest trees (http://www.treebreeding.com/technology/ 
treeplan) and INGER in Rice (https://www.irri.org/inger), phenotyp
ing and genotyping efforts are gathered and standardized on a 
wide geographical scale to perform selections for future genera
tions of breeding. In such large-scale programs, the genetic evalu
ation system play a crucial role in assessing the genetic merit of 
individuals. Data collected in trials with crops or forest trees typic
ally need to be standardized, where site-specific effects are re
moved from the phenotypic records, and genetic parameters 
must be collected at a population level to enhance nationwide or 
global comparison between available material. Then, depending 
on the breeding goal and target zone, all available trait data needs 
to be weighted together in the final BLUP analysis step. Thus, a 
number of analysis steps are conducted sequentially, to be able 
to evaluate all traits accordingly with reasonable accuracy and 
computing time. However, combining results from multiple PCA 
of different datasets is not straightforward because PCA is sensitive 
to the variance structure of the data it is applied to, and each ana
lysis will reflect the unique variance structure (of that particular 
dataset). Harmonization of the data sets can circumvent this hur
dle. For example, preadjustment techniques that remove within 
site variation, and defining common trait classes that should be in
cluded. In addition, incremental PCA (IPCA) (Weng et al. 2003) can 
be used as a feasible option to merge harmonized datasets into one 
very large. An alternative is to perform a meta-analysis of the re
sults of each individual PCA to score which traits that are important 
for respective PC and identify common trends and ranklist similar
ities. Kim et al. (2018) developed a sparse PCA alternative (MetaPCA) T
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by combining the L1-regularization approach of Zou et al. (2006)
with a penalized matrix decomposition calculation, and showed 
improved accuracy in analysis of multiple omics datasets in yeast, 
prostate cancer, mouse metabolism and TCGA pan-cancer methy
lation. Further effort into this direction is needed to improve 
large-scale genetic evaluations using PCA-based methods.

Here, we used standard SVD-based PCA and BPCA to obtain or
thogonal PCs of all phenotypic traits. There are many alternative 
directions to improve this dimension reduction step, depending 
on the characteristics of the phenotypic data and the goal of the 
genetic evaluations. For example, each obtained PC in these ex
ample cases were a mixture of all included traits, albeit some to 
a very low degree. It is tempting simply to truncate small contribu
tions of some variables, but Cadima and Jolliffe (1995) show that 
this ad-hoc solution can indeed result in erroneous approxima
tions and poor interpretations. Zou et al. (2006) introduced sparse 
PCA (SPCA) by performing a L1-regularization step via elastic nets 
so that sparse loadings is obtained, which greatly increases inter
pretability of the analysis (but see also Jolliffe et al. 2003; Gao 2008). 
In a similar effort, Cox and Arnold (2018) showed how to use sim
ple or Hausman components to improve the interpretability of the 
analysis which satisfied the Thurstonian criteria (i.e. each compo
nent does not containing too many variables and each variable 
does not being incorporated into many components). These ef
forts could help in the genetic evaluations of breeding populations 
when creating selection indices for a more transparent use of PCs.

Although the obtained PCs are orthogonal at the phenotypic 
scale, this is not necessarily the case for genetic and environmen
tal terms. This discrepancy suggests that analyzing all PCs with 
univariate linear mixed models (LMMs) may not always be opti
mal. We observed few indications of nonzero genetic correlations 
among the PCs in the two examples. Our approach sometimes ap
proximates the actual multivariate model, and other times it pro
vides an equally good alternative. This indicates that further 
studies are needed to determine under which conditions this uni
variate approximation is sufficient and what factors influence the 
level of correlations among PCs. Potential differences in correla
tions of PCs might be due to several factors. First, if the available 
traits are not too highly phenotypically correlated and spans all 
the PC space effectively and evenly (i.e. the PCA loadings), it might 
help to improve the efficiency of the method as PCA is not re
stricted when producing the rotation (transformation) of the trait 
data. Additionally, the sample sizes of the data sets could also be 
an important factor (Jollife and Cadima 2016; De Marco and 
Nóbrega 2018), as well as the genetic relationships between the 
pedigree members (Kerr et al. 2015; Momen and Morota 2018; 
Zhang et al. 2018). A larger sample size with a higher proportion 
of related individuals can help detect a nonzero correlation if it ex
ists, despite limitations in both the PCA and the subsequent LMM 
analysis. Further studies involving simulations using PCA with 
univariate LMMs are warranted to determine when and why the 
univariate approximation is a feasible choice.

In the Scots pine example presented here, all traits were pread
justed prior to the ordination analysis to remove site-specific ef
fects (Calleja-Rodriguez et al. 2019), turning all the data as 
continuous traits, even though some were originally integer 
counts, such as the number of top shoots of the tree. Similarly, 
in the Loblolly pine example, all trait data (i.e. estimated breeding 
values) were adjusted or deregressed following the approach sug
gested by Garrick et al. (2009). Continuous data works very well 
with PCA, as it relies on linear transformation that identifies the 
PC maximizing the variance in the data, regardless of the under
lying distribution. However, the interpretation of the components 

is enhanced if the data are normally distributed. Nonnormal data, 
especially if it includes outliers or is heavily skewed, can affect the 
estimation of the correlation matrix, which standard PCA relies on 
(Jolliffe 2002). An alternative is robust PCA methods that are de
signed to handle data with outliers or noise that traditional PCA 
might not handle well: the method decomposes the data into a 
low-rank matrix and a sparse matrix, which can capture cor
rupted observations (Gao 2008; Wright et al. 2009). In addition, al
ternatives exists for noncontinuous data, such as the multiple 
correspondence analysis (MCA), which is used for analyzing 
multivariate data sets containing categorical variables by creating 
an indicator matrix (a Burt table) from the original variables (Mori 
et al. 2016). To summarize, there exists a smorgasbord of alterna
tive PCA related approaches which can be used in situations of 
nonnormal noncontinuous data and to improve interpretability 
of PCA.

While PCA is best suited for continuous data, it is sometimes ap
plied to discrete data in genetic analysis due to its popularity and 
ease of use. Widely used examples are applying PCA on binary 
marker data, such as SNPs or insertion-deletion (Indel) markers, 
to infer ancestral population assignments of the analyzed popula
tion or to correct for population stratification in genome wide asso
ciation studies (GWAS), even though the discrete nature of the 
marker data violates the assumptions of the PCA. Some alternatives 
for overcoming this hurdle involves using correspondance analysis 
(i.e. MCA) or applying model-based alternatives which can handle 
discrete data in analysis of genetic variation (Bishop 2006; Agrawal 
et al. 2020): further research into this direction is warranted.

In summary, we have shown that PCA can be a viable option in 
multitrait analysis, and in particular if the number of traits mea
sured is large. By reducing the multitrait LMM to univariate alterna
tives, computing times can be 1,000-fold reduced while capturing 
all phenotypic variation of the analyzed population. Several alter
natives exists for data imputation to complete multitrait records 
which allows for the use of PCA of phenotypic profiles in real breed
ing applications as highlighted in both of our case studies. Another 
advantage of the proposed approach is that there exists many 
available implementations of PCA and LMM which can be com
bined according to the specific application at hand. In our case, 
we tested some of the available LMM implementations (Table 3) 
that can accommodate various types of response functions, type 
of predictor sets and dependencies among those. We believe that 
PCA-based genetic evaluations can be a part of a population genetic 
analysts toolbox for accurate and fast multitrait analysis where 
large-scale phenotyping efforts have been performed.

Data availability
The Scots pine data are provided at https://github.com/jonhar97/ 
Reduced_phenotype_MME.

Supplemental material available at G3 online.
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onment interaction and climate sensitivity in growth and wood 
density of European larch. For Ecol Manage. 545:121259. doi:10. 
1016/j.foreco.2023.121259

16 | J. Ahlinder et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/14/12/jkae228/7828751 by guest on 25 June 2025

https://doi.org/10.1139/cjfr-2017-0152
https://doi.org/10.3390/f12040498
https://doi.org/10.2527/jas1976.4361188x
https://doi.org/10.1037/h0071325
https://doi.org/10.1037/h0071325
https://doi.org/10.1111/j.0014-3820.2002.tb01356.x
https://doi.org/10.1007/s11295-019-1377-y
https://doi.org/10.1007/s11295-019-1377-y
https://doi.org/10.1186/1297-9686-22-3-339
https://doi.org/10.1186/1297-9686-22-3-339
https://doi.org/10.1016/j.isprsjprs.2020.11.006
https://doi.org/10.1016/j.isprsjprs.2020.11.006
https://doi.org/10.1098/rsta.2009.0159
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1198/1061860032148
https://doi.org/10.1007/s11295-015-0887-5
https://doi.org/10.1093/bioinformatics/btx765
https://doi.org/10.1534/genetics.104.029181
https://doi.org/10.1186/s12870-023-04695-w
https://doi.org/10.1007/s11295-017-1144-x
https://doi.org/10.1186/s12859-023-05519-2
https://doi.org/10.1080/02827581.2020.1833979
https://doi.org/10.1111/jbg.2007.124.issue-2
https://doi.org/10.1186/1297-9686-41-21
https://doi.org/10.1186/s12711-023-00781-7
https://doi.org/10.1111/jbg.2008.125.issue-6
https://doi.org/10.1111/jbg.2008.125.issue-6
https://doi.org/10.1186/s12711-018-0415-9
https://doi.org/10.1038/s41588-018-0271-0
https://doi.org/10.1186/s12711-022-00743-5
https://doi.org/10.1093/bioinformatics/btg287
https://doi.org/10.1093/bioinformatics/btg287
https://doi.org/10.1159/000022854
https://doi.org/10.1093/biomet/58.3.545
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.1515/sg-2004-0024
https://doi.org/10.1016/j.foreco.2024.122135
https://doi.org/10.1016/j.foreco.2024.122135
https://doi.org/10.2307/2533976
https://doi.org/10.1016/j.foreco.2023.121259
https://doi.org/10.1016/j.foreco.2023.121259


R Core Team. 2022. R: A Language and Environment for Statistical 

Computing. Vienna, Austria: R Foundation for Statistical 
Computing

Resende JF, Muñoz P, Resende MD, Garrick DJ, Fernando RL, Davis JM, 
Jokela EJ, Martin TA, Peter GF, Kirst M. 2012. Accuracy of genomic 
selection methods in a standard data set of loblolly pine (Pinus 
taeda L.). Genetics. 190:1503–1510. doi:10.1534/genetics.111. 
137026

Rue H, Martino S, Chopin N. 2009. Approximate Bayesian inference 
for latent Gaussian models by using integrated nested Laplace 
approximations. J R Stat Soc Ser B (Stat Methodol). 71:319–392. 
doi:10.1111/j.1467-9868.2008.00700.x

Runcie DE, Mukherjee S. 2013. Dissecting high-dimensional pheno
types with Bayesian sparse factor analysis of genetic covariance 
matrices. Genetics. 194:753–767. doi:10.1534/genetics.113.151217

Runcie DE, Qu J, Cheng H, Crawford L. 2021. MegaLMM: mega- 
scale linear mixed models for genomic predictions with 
thousands of traits. Genome Biol. 22:1–25. doi:10.1186/ 
s13059-021-02416-w

Smith A, Cullis B, Thompson R. 2001. Analyzing variety by environ
ment data using multiplicative mixed models and adjustments 
for spatial field trend. Biometrics. 57:1138–1147. doi:10.1111/j. 
0006-341X.2001.01138.x

Stacklies W, Redestig H, Scholz M, Walther D, Selbig J. 2007. 
pcaMethods–a bioconductor package providing PCA methods 
for incomplete data. Bioinformatics. 23:1164–1167. doi:10.1093/ 
bioinformatics/btm069

Stekhoven DJ, Buehlmann P. 2012. Missforest–non-parametric miss
ing value imputation for mixed-type data. Bioinformatics. 28: 
112–118. doi:10.1093/bioinformatics/btr597

Tipping ME, Bishop CM. 2002. Probabilistic principal component ana
lysis. J R Stat Soc Ser B Stat Methodol. 61:611–622. doi:10.1111/ 
1467-9868.00196

Trabzuni D, Thomson PC. 2014. Analysis of gene expression data 
using a linear mixed model/finite mixture model approach: appli

cation to regional differences in the human brain. Bioinformatics. 
30:1555–1561. doi:10.1093/bioinformatics/btu088

Waldmann P, Hallander J, Hoti F, Sillanpää MJ. 2008. Efficient Markov 
chain Monte Carlo implementation of Bayesian analysis of addi
tive and dominance genetic variances in noninbred pedigrees. 
Genetics. 179(2):1101–1112. doi:10.1534/genetics.107.084160

Warner RD, Greenwood PL, Pethick DW, Ferguson DM. 2010. Genetic 

and environmental effects on meat quality. Meat Sci. 86(1): 
171–183. doi:10.1016/j.meatsci.2010.04.042

Weng J, Zhang Y, Hwang WS. 2003. A fast algorithm for incremental 
principal component analysis. In: Liu J, Cheung Ym, Yin H, eds. 
Intelligent Data Engineering and Automated Learning. IDEAL 
2003. Lecture Notes in Computer Science. Vol. 2690. Berlin, 
Heidelberg: Springer, doi:10.1007/978-3-540-45080-1_122

Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. 
New York: Springer-Verlag.

Wolak ME. 2012. nadiv: an R package to create relatedness matrices 
for estimating non-additive genetic variances in animal models. 
Methods Ecol Evol. 3:792–796. doi:10.1111/mee3.2012.3.issue-5

Wold S, Esbensen K, Geladi P. 1987. Principal component analysis. 
Chemometr Intell Lab Syst. 2:37–52. doi:10.1016/0169-7439(87) 
80084-9

Wright J, Ganesh A, Rao S, Peng Y, Ma Y. 2009. Robust principal com
ponent analysis: exact recovery of corrupted low-rank matrices 
via convex optimization. In: Bengio Y, Schuurmans D, Lafferty J, 
Williams C, Culotta A, eds. Advances in Neural Information 
Processing Systems. Vol. 22. Curran Associates, Inc.

Yang L, Zhang Y, Song Y, Zhang H, Yang R. 2022. Canonical trans
formation for multivariate mixed model association analyses. 
Theor Appl Genet. 135(6):2147–2155. doi:10.1007/s00122-022- 
04103-1

Yu L, Zhang J, Brock G, Fernandez S. 2019. Fully moderated t-statistic 
in linear modeling of mixed effects for differential expression 
analysis. BMC Bioinformatics. 20(1):1–9. doi:10.1186/s12859-014- 
0430-y

Zhang SY, Olasege BS, Liu DY, Wang QS, Pan YC, Ma PP. 2018. The 
genetic connectedness calculated from genomic information 
and its effect on the accuracy of genomic prediction. PLoS One. 
13:1–18.

Zhu H, Zhang S, Sha Q. 2018. A novel method to test associations be
tween a weighted combination of phenotypes and genetic var

iants. PLoS One. 13:1–17.
Zou H, Hastie T, Tibshirani R. 2006. Sparse principal component 

analysis. J Comput Graph Stat. 15(2):265–286. doi:10.1198/ 
106186006X113430

Editor: D.-J. de Koning

Fast multitrait genetic evaluations | 17
D

ow
nloaded from

 https://academ
ic.oup.com

/g3journal/article/14/12/jkae228/7828751 by guest on 25 June 2025

https://doi.org/10.1534/genetics.111.137026
https://doi.org/10.1534/genetics.111.137026
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1534/genetics.113.151217
https://doi.org/10.1186/s13059-021-02416-w
https://doi.org/10.1186/s13059-021-02416-w
https://doi.org/10.1111/j.0006-341X.2001.01138.x
https://doi.org/10.1111/j.0006-341X.2001.01138.x
https://doi.org/10.1093/bioinformatics/btm069
https://doi.org/10.1093/bioinformatics/btm069
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1111/1467-9868.00196
https://doi.org/10.1111/1467-9868.00196
https://doi.org/10.1093/bioinformatics/btu088
https://doi.org/10.1534/genetics.107.084160
https://doi.org/10.1016/j.meatsci.2010.04.042
https://doi.org/10.1007/978-3-540-45080-1_122
https://doi.org/10.1111/mee3.2012.3.issue-5
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1007/s00122-022-04103-1
https://doi.org/10.1007/s00122-022-04103-1
https://doi.org/10.1186/s12859-014-0430-y
https://doi.org/10.1186/s12859-014-0430-y
https://doi.org/10.1198/106186006X113430
https://doi.org/10.1198/106186006X113430

	Principal component analysis revisited: fast multitrait genetic evaluations with smooth convergence
	Introduction
	Materials and methods
	Multitrait LMM
	Standard singular value decomposition-based PCA
	Model-based PCA
	Implementation details
	Analysed Scots pine data
	Analysed Loblolly pine data

	Results
	PCA-based multitrait LMM analysis of a Scots pine field progeny trial
	Accurate EBV ranking
	Missing data can be efficiently handled

	PCA allows for rapid multitrait analysis in a Pinus taeda pedigree

	Discussion
	Data availability
	Acknowledgments
	Funding
	Conflicts of interest
	Literature cited




