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Summary 

Accurate product recovery predictions are necessary to enable efficient planning of 

harvesting operations and optimisation of wood flow to industry. Swedish forest 

companies and Skogforsk have therefore developed an extensive database infrastructure 

comprising Cut-To-Length (CTL) harvester production files. The system allows 

imputation of tree lists retrieved from the harvester data to stands scheduled for harvest 

in operational planning. Based on the imputed tree lists, the value recovery in such areas 

can be estimated, using either bucking simulations or, more expeditiously, price stem 

models.  

The novelty proposed in this study was to improve the existing imputation approach, 

using DBH information produced by a mobile, backpack-mounted laser scanning (MLS) 

system in pre-harvest inventories on five experimental, mixed coniferous forest areas of 

0.16 to 0.32 ha located in north-eastern Sweden. The system integrates a NovAtel SPAN-

IGM-S1 Inertial Navigation System and a Velodyne VLP-16 scanner for collecting 3D 

point cloud data that provides information on DBH and positions for individual trees. 

The working hypothesis of the study was that the information provided by the MLS 

system can be used to impute tree lists that are a better match to the ground-truth in 

terms of DBH distributions, and thereby improve the accuracy of volume predictions and 

value recovery. The main objective of the study was to test the working hypothesis under 

several scenarios, where the value recovery predictions were run using various 

combinations of auxiliaries. 

The results indicate that:  

• injecting MLS data as an auxiliary into the imputations considerably improves the 

match between the DBH values in the imputed and ground-truth tree lists;   

• uncertainty in value recovery was reduced by half; 

• using data augmentation considerably improved the results. 
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Conclusions:  

• The limited validation dataset restricts the generalisation power of the study. 

However, there is evidence that DBH information retrieved from MLS measurements 

may have a positive effect on the imputation results, assuming that the tree species 

composition is known or accurately predicted. 

• The augmentation method developed for this study has potential to increase the 

imputation accuracy, especially for value recovery, provided that detailed spatial 

information is available for the pre-harvest inventory data. MLS is compatible with 

this approach, if acquired using probability sampling schemes.     

• The costs of the MLS survey were not quantified in the assessment. For operational 

deployment of the method, inventory costs should be considered when selecting the 

most cost-efficient pre-harvesting approach. 

• The results opened for future research directions focusing on:   

o inclusion of external stem quality descriptors extracted from MLS data (such as 

straightness/sweep, branch/knot size and distribution, bark and decay) in the 

imputation workflow for value and product and value recovery predictions;    

o incorporation of other types of auxiliaries, such as airborne laser scanning data 

and/or satellite imagery. For example, textural descriptors for the forest canopy 

surface derived from airborne laser scanning data relate to the horizontal forest 

vegetation distribution, and this may replace, at least partially, the need for pre-

harvest MLS inventories for DBH data collection, while satellite imagery can 

support the prediction of tree-species proportions required for value and 

product recovery calculations. 
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Sammanfattning 

I arbetet för att stödja en effektiv planering av skördeoperationer och optimering av 
råvaruflödet till industrin är det nödvändigt med noggranna prognoser för 
produktvolymer. För att möta detta krav har Skogforsk tillsammans med svenska 
skogsföretag utvecklat en omfattande databasinfrastruktur som innehåller 
sammanställda produktionsfiler från skördare. Systemet gör det möjligt att skatta 
trädlistor för trakter som planeras att avverkas genom att hämta information från 
skördardata. Baserat på de tillskrivna trädlistorna kan virkesvärdet på sådana trakter 
uppskattas antingen med hjälp av apteringssimuleringar, eller enklare, med hjälp av 
stamprismodeller. 

I denna studie testades möjligheten att förbättra den befintliga metoden för 
utbytesprognoser med hjälp av information om träddiametern. Detaljerad information 
samlades in med ett mobilt, ryggsäcksmonterat laserskanningssystem (MLS) Systemet 
integrerar ett tröghetsnavigerings-system, NovAtel SPAN-IGM-S1, och en Velodyne VLP-
16 laserskanner för att samla in 3D-punktmolnsdata som ger information om 
träddiameter och positioner för enskilda träd. Försöksytorna bestod av 5 
blandbarrskogsområden på ca 0,16 till 0,32 ha belägna i nordöstra Sverige. 

Arbetshypotesen för studien var att informationen som tillhandahölls av MLS-systemet 
kan användas för att tillskriva trädlistor som bättre matchar utfallet från avverkning, med 
avseende på diameterfördelningar och därmed förbättra noggrannheten i skattningar av 
trädvolym och virkesvärde. 

Huvudsyftet med studien var alltså att testa arbetshypotesen under flera scenarier, där 
skattningar av virkesvärdet gjordes med hjälp av olika kombinationer av indata i 
modellen. 

Resultaten tyder på att: 

• Matchningen mellan diameterfördelning i skattningar och utfall förbättras 
avsevärt om man tillför MLS-data som indata i skattningarna 

• Osäkerheten i skattning av virkesvärde minskade väsentligt 

• Genom att använda dataförstärkning (data augmentation) förbättrades resultaten 
ytterligare, och minskade avvikelserna mellan skattningar och utfall 

Slutsatser: 

• Den begränsade utvärderingsmaterialet, fem ytor, gör att det inte går att 
generalisera resultaten från studien. Men det finns fortfarande bevis för att 
diameterinformation som hämtats från MLS-mätningar kan ha en positiv effekt 
på utbytesskattningar, förutsatt att trädslagsfördelningen är känd. 

• Förstärkningsmetoden som utvecklats för denna studie har potential att öka 
skattningsnoggrannheten, speciellt för virkesvärdet, förutsatt att detaljerad 
rumslig information finns tillgänglig i planeringen före avverkning. MLS är 
kompatibelt med detta tillvägagångssätt, om det kan insamlas på ett systematiskt 
sätt. 

• Kostnaderna för MLS-undersökningen har inte inkluderats i studien, men vid 
operativ användning av metoden bör inventeringskostnaderna övervägas för att 
välja den mest kostnadseffektiva metoden. 

• Resultaten öppnar för framtida forskningsriktningar med fokus på:  
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o Användning av stamkvalitetsvariabler från MLS-data (exempelvis rakhet, 
gren- och kviststorlek) för skattningar av produktvolymer och utbytesvärde. 

o Inkludering av andra typer av hjälpmedel, såsom luftburna 
laserskanningsdata och / eller satellitbilder. Till exempel mått som beskriver 
den spatiala fördelningen av skogsvegetationen. Medan satellitbilder kan 
skatta trädslagsfördelningen som krävs för skattningar av virkesvärde och 
produktutfall. 
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1. Project background and research 

objectives 

In a customer-oriented production strategy, wood supply companies must schedule forest 

cuttings to meet industry requirements. The cutting plans are usually based on yield 

predictions derived from the information available in the stand databases, and the 

bucking decisions are made according to price and demand matrices for various timber 

assortments (Malinen et al 2001, Arlinger et al 2003). Accurate product recovery 

predictions are essential for efficient planning of forest operations and optimising wood 

flows in the forest industry (Moberg & Nordmark 2006, Wilhelmsson et al 2011). 

When the description of the forest stand is inaccurate, accuracy of the yield estimates will 

be poor and necessitate additional efforts to comply with the industry requirements 

(Nordström & Möller 2009). For instance, the information on forest stands available in 

the forest registers is not spatially explicit and comprises mainly average attributes. 

Spatially detailed information on tree height, basal area, timber volume, species, stem 

diameters, and tree height distributions are crucial for accurate value and product 

recovery predictions.  

In Sweden, freely available raster maps containing the most common forest state 

estimates (i.e., basal area, mean basal area, weighted diameter, and height, standing 

volume and biomass) are produced by the Swedish University of Agricultural Sciences, 

using the national airborne laser survey data acquired by the Swedish government agency 

for mapping and land registration (Lantmäteriet). The map service, called Skogliga 

grunddata, is used by the entire forest sector to improve forestry planning, and serves as 

a basis for decisions concerning many different and new applications (Anon 2020b). 

Currently, the forest state attributes provided by Skogliga grunddata are also some of the 

most important inputs for yield predictions in the imputation system developed by 

Skogforsk (Söderberg 2015, Söderberg et al 2017, 2018). 

There is a large body of literature investigating the use of harvester data for product 

recovery and yield predictions in Nordic countries (Malinen et al 2001, Kivinen et al 

2005, Peuhkurinen et al 2008, Holmgren et al 2012, Barth & Holmgren 2013, Sanz et al 

2018). In Sweden, Skogforsk has developed a spatial database system where production 

files from harvesters are uploaded, quality-checked, and compiled in various database 

tables. In the current technical implementation, the harvester data are also stored by 

homogeneous, spatially compact microcompartments with an average area around 0.5-

1.0 ha (Figure 1). For each microcompartment, the database stores detailed information 

of all stems and bucked logs, as well as summary statistics such as tree species 

composition, timber volume, and tree heights. The geographical location of the 

microcompartments, as well as the harvesters, can also be retrieved, as field information 

can be easily co-registered to various types of GIS products. The harvester database can 

therefore provide a large pool of reference observations to support the forest mapping 

using multisource GIS data. 

The yield and product recovery workflow developed by Skogforsk is based on nearest 

neighbour (NN) imputations, which is a donor-based method for replacing missing data 

with data with similar characteristics (Eskelson et al 2009). Due to their simplicity and 

ability to provide operationally useful results, NN imputations have gained strong 
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acceptance in forestry (Eskelson et al 2009). More precisely, Skogforsk’s system uses the 

k-MSN (Most Similar Neighbour) imputation method (Moeur & Stage 2006) deployed via 

the ‘yaImpute’ package (Crookston et al 2007) of the R programming software (R Core 

Team 2020). Technical details and empirical evaluations of the system are provided by 

Möller et al (2017), Söderberg et al (2017) and Söderberg et al (2018). This system is 

currently implemented at several major Swedish forest companies, e.g. Sveaskog and 

Södra.  

Using imputations, tree lists from the harvester database can be assigned to new forest 

tracts, and the potential yield on such areas can then be estimated using bucking 

simulations. Bucking simulations based on stem reconstruction harvester data are the 

best approach for product recovery predictions (Malinen 2007). Alternatively, stem price 

lists based on species-specific DBH classes and stem volumes can be used for more 

expeditive value recovery calculations (Möller & Arlinger 2007, Möller et al 2007). 

 

 

Figure 1. Spatial distribution of the reference observations (yellow dots) currently available in the harvester 

stem database at Skogforsk (left panel). Forest stand segmentation into microstands based on dominant 

height measurements provided by the harvester data is illustrated in the centre and right panels. Harvester 

positions are represented by the black dots and microcompartments with similar properties (tree height in 

this example) are the numbered rasterized areas shown in different colours. The right panel shows details 

from harvester data by microcompartments of about 0.5 hectare 

 

For accurate product recovery predictions, it is advantageous if the DBH distributions of 

the imputed tree lists match the ground-truth DBH distributions as closely as possible. 

Currently, information on the DBH distributions provided in the forest registers and the 

forest state estimates (Skogliga grunddata) is restricted to average values. Usually, 

additional information on the entire DBH distributions is coarsely estimated by low 

intensity pre-harvest inventories.  

One of the emerging technologies for automating data acquisition in forest inventories is 

mobile laser scanning (MLS). MLS are terrestrial measurement systems that produce 3D 

point cloud data that can be used for algorithmic modelling of individual tree stems 

(Liang et al 2014). Compared to single viewpoint terrestrial measurement methods for 

forestry applications, such as terrestrial laser scanning, MLS has the advantage of 
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continuous data acquisition from multiple viewpoints, reducing the tree occlusion errors, 

and helps cover wider areas in a cruising mode (Liang et al 2014, Holmgren et al 2019). 

Our study used a backpack-mounted system integrating a NovAtel SPAN-IGM-S1 INS and 

a Velodyne VLP-16 scanner for stem positioning and DBH measurements in pre-harvest 

inventories. The technical set-up and details of the procedure can be found in Holmgren 

et al (2017) and Holmgren et al (2019). 

The research objective was to investigate the use of detailed DBH information provided 

by MLS technology for improving volume and value recovery predictions, assuming that 

information on species composition is available. The DBH information can be inserted as 

auxiliary data into the imputation workflow to search for relevant matches in distribution, 

not just in the form of averages. 

2. Material  

The material consists of several datasets: 

• tree lists provided by mobile laser scanning (MLS) and from harvesters (HRV) 

• auxiliary information in the form of raster maps of predicted forest state attributes 

derived from airborne laser scanning data 

• species-specific stem prices by DBH classes 

2.1 Study area 
Data was acquired on six experimental blocks of 0.16 to 0.32 ha containing mixed 

coniferous forest, located in Västerbotten county, northern Sweden. Due to technical 

issues, the measurements on block no.2 could not be used, so the analyses were run on 

only five experimental blocks. The broad spatial location of datasets is presented in Figure 

2.  
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Figure 2. Geographical location of the empirical blocks (Google Earth Pro v.7.3.2, Map data: Google, Image 

Landsat/Copernicus, 2018). The yellow dots indicate the locations of the training dataset, and the validation 

data is shown in pink. 

2.2 Tree list information 
Mobile laser scanning data was collected on selected experimental forest areas (or 

blocks), while the HRV datasets were available in the Skogforsk’s harvester database and 

for the blocks. The harvester data provides the entire tree list information (e.g., stem 

volumes, stem dimensions, tree species distribution, and harvester positions), while the 

MLS contains only the planimetric (x, y) positions for a sample of trees and their DBH. 

The experimental design and the algorithms for DBH extraction, as well as the accuracy 

assessments of the results provided by the mobile laser scanning measurements, are 

presented in Willén et al 2018. Details on the MLS acquisition, data processing, and 

derivation of DBH measurements are described in Holmgren et al (2017) and Holmgren 

et al (2019). In the following sections, we assume that the tree-level DBH measurements 

provided by the mobile laser scanning system and the harvester are error free. 

2.2.1 Species-specific stem price lists 
Tree values (SEK/m3 under bark) were calculated using stem price lists for the main tree 

species (Spruce, Pine and Deciduous) compiled by Skogforsk specialists using industry 

data from 2020 representative for our study area. The prices for Spruce and Pine trees 

refer to round wood, while the low-grade wood from coniferous trees and all deciduous 

trees were aggregated into a common price category (Deciduous). We resorted to this 

simplification to eliminate the uncertainties related to assigning tree-level quality 

attributes from the assortment lists in the harvester data to the entire stem. 

Table 1. Tree species specific stem price list (SEK/m3 under bark) by breast height diameter (DBH) classes. 

 

Tree    

species 

DBH class (mm) 

80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 

Spruce 270 270 270 270 331 366 399 410 420 430 435 435 435 435 440 440 445 445 445 445 445 445 

Pine 270 270 270 270 310 374 395 411 415 420 425 425 430 430 430 430 430 435 435 423 435 435 

Deciduous 250 
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2.2.2 Tree lists on validation blocks 
The block-level information from the tree lists provided by each measurement method 

(MLS and harvester) is summarised in Table 2 and Table 3. The cumulative distributions 

for the DBH data at block level are presented in Figure 3. 

Table 2. Summary statistics – stem number (N), average DBH, standard deviation and the range (min-max) 
for DBH measurements (in cm) derived from the empirical DBH lists, by block. Block 2 was omitted from the 
study due to technical issues 
 

Block 
Harvester    Mobile laser scanning  

𝑁 𝐷𝐵𝐻̅̅ ̅̅ ̅̅ (1) 𝑆𝑇𝐷(2) 𝑅𝑎𝑛𝑔𝑒   𝑁 𝐷𝐵𝐻̅̅ ̅̅ ̅̅ (1) 𝑆𝑇𝐷(2) 𝑅𝑎𝑛𝑔𝑒 

Vindeln 

(Block 1) 
457 27.96 7.58 

8.00   
102 27.69 8.29 

8.10 

45.10   52.30 

Kvarnraningsmyr 

(Block 3) 
580 24.52 8.51 

8.60   
163 24.61 7.94 

10.00 

42.90   40.80 

Hassjestomyran 

(Block 4) 
356 19.31 6.47 

8.10   
114 20.41 7.09 

8.40 

38.30   41.00 

Fastkorningen 

(Block 5) 
410 20.44 6.78 

8.00   
131 20.52 6.99 

8.50 

38.10   41.50 

Furunassjon 

(Block 6) 
293 27.03 6.11 

12.80   
81 25.49 6.21 

9.50 

41.90   41.50 

 

(1), (2) arithmetic mean and standard deviation for the empirical DBH measurements (cm) 
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Table 3. Summary statistics for the five blocks in the validation dataset derived from harvester data. The 

overall average is calculated as area-weighted block averages. Block 2 was omitted from the study due to 

technical issues 

Block ID 

Block 

area    

 (ha) 

Block 

area 

weigths1 

  Volume by tree species   
Block  

volume    Spruce Pine Deciduous  

Vindeln 

(Block 1) 
0.238 0.231 

 mc/ha 172.20 51.94 8.28  232.42 

 % 74 22 4  100.00 

Kvarnraningsmyr 

(Block 3) 
0.316 0.306 

 mc/ha 39.93 213.00 2.29  255.22 

 % 15.6 83.5 0.9  100.00 

Hassjestomyran 

(Block 4) 
0.159 0.154 

 mc/ha 75.25 96.96 11.54  183.75 

 % 41 53 6  100.00 

Fastkorningen 

(Block 5) 
0.157 0.152 

 mc/ha 171.78 56.22 13.56  241.57 

 % 71 23 6  100.00 

Furunassjon 

(Block 6) 
0.163 0.158 

 mc/ha 184.86 67.23 5.97  258.07 

 % 72 26 2  100.00 

Overall  

average (2) 

      mc/ha 118.72 111.24 7.39   237.35 

      % 50.0 47.0 3.0   100.00 

(1) The proportion of individual block areas relative to the total block area 

(2) The block area- weigthed average  
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Figure 3. Empirical distribution functions for tree-level DBH measurements produced by the MLS system 

(red) and by the harvester (black), for each block. 

 

2.2.3 Tree lists in the training dataset 
Using Skogforsk’s harvester database, 465 harvesting sites were selected as reference 

data. The stands were segmented into 4737 microstands (yellow dots in Figure 1) using 

the methodology described by Söderberg et al (2017) and Söderberg et al (2018). Thirty-

two percent of the microstands were dominated by Pine and 68% by Spruce. While the 

empirical blocks had clear spatial delineation in the form of spatial polygons, the 

boundaries of the observations from the harvester database (microstands or calculation 

areas) had to be approximated using the harvester positions provided by the GNSS 

receivers mounted on the machines. For this, 10-m circular buffers were constructed 

around the machine positions and then merged, and the microstand boundaries were 

then approximated as the outer polygon surrounding the harvester position buffers. 

Summary statistics for selected attributes on the tracts and microstands are presented in 

Table 4. 
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Table 4. Summary statistics of area and volume for the forest tracts and the microstands in the training 

dataset. 

 

Aggregation  

level 

Statistics 

Range (1) Mean CV (2) 

Area(ha) 
  

Stands 1.05-41.52 7.85 84.86 

Microstands 0.51-2.13 0.77 27.88 

Volume (m3/ha) 
  

Stands 
  

Spruce 105.10-489.81 213.56 27.49 

Pine 112.22-396.71 188.86 23.27 

Overall 105.10-489.91 196.68 26.48 

Microstands 
  

Spruce 105.10-489.81 213.56 28.47 

Pine 112.22-396.71 188.86 24.01 

Overall 71.97-838.49 258.97 40.19 

 

(1) The minimum and maximum values, with the minimum positive value in the 

parenthesis 

(2) Coefficient of variation relative in percentages relative to the average value 

 

2.3 Auxiliary information 

2.3.1 Auxiliary information extracted from the DBH distributions 
For the empirical blocks, the DBH distributions are available from the tree lists recorded 

by the harvesters, as well as from the MLS measurements, while for the database 

observations, the information on the DBH distribution comes only from harvester data. 

Preliminary analyses (Holmgren et al 2017) indicate good correspondence between the 

DBH information provided by the two measurement systems. The DBH information 

available from the tree lists in the harvester database was considered compatible to MLS 

measurements and were treated similarly in the analyses. The MLS data were considered 

as probabilistic samples from the measurements, which is not true, but this assumption is 

required for justifying the analyses. 

The DBH distributions were quantified using various statistics such as rank statistics and 

cumulants extracted similarly from MLS measurements. The rank statistics consist of 

four DBH quantiles for the probabilities of 0.106, 0.309, 0.691 and 0.894 corresponding 
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to the evenly spaced standard normal quantiles of -1.5, -0.5, 0.5, and 1.5. The cumulants 

(CML) are higher-order statistics derived from the empirical DBH lists as non-linear 

combinations of the central moments, thereby providing additional information to the 

usual location, scale, skewness, and kurtosis statistics. Here we used only four cumulants 

(from the 3rd up to the 6th), defined as: 

 

 

where 𝑚𝑘 = 𝐸[𝑑𝑏ℎ − 𝐸[𝑑𝑏ℎ]]
𝑘

is the central moment of order k of the empirical DBH 

distribution and 𝐸[𝑑𝑏ℎ] is the expected value. Note that the second central moment of the 

empirical DBH distribution is biased, since the tree-level DBH observations are not 

always independent. The lack of independence is due to the various spatial patterns 

characterising the tree distribution within forest stands. All the higher moments and 

cumulants, including the second central moment, can be also biased. As far as we know, 

the effect of spatial autocorrelation on DBH distribution modelling has not been 

examined in forestry research, and we aim to assess the effect(s) of these biases in this 

study. A set of eight features describing the DBH data was produced, henceforth denoted 

as X.MLS. 

2.3.2 Auxiliary information extracted from National Forest State Maps  
The raster maps for the main forest state attribute estimates were produced between 

2009-2014 using the national airborne laser (ALS) survey data acquired by the Swedish 

government agency for mapping and land registration (Lantmäteriet). The Swedish 

Forest Agency and the Swedish University of Agricultural Sciences (SLU) combined the 

laser data and field plots from the Swedish National Forest Inventory to derive digital 

raster maps of the main attributes characterising the forest state (i.e., basal area, mean 

basal area weighted diameter and height, standing volume, and biomass) at a spatial 

resolution of 12.5 x 12.5m. In our study, a set of four features from the National Forest 

State Map attributes (called here X.SKGD) was used, namely basal area, mean basal area 

weighted diameter and height, and standing volume. The point estimates for the forest 

attributes correspond to the 2014 calendar year, and their accuracy is not provided, but a 

discussion on the lack-of-fit of the models is provided by Nilsson et al. 2017. 

2.3.3 Field data configuration 
An overview of the spatial datasets for the five blocks used in the analyses is shown in 

Figure 4. For block 1 (Vindeln), the MLS, harvester and SKGD pixel centre positions do 

not fully cover the extent of the block, due to errors (most likely recording errors) that 

have contaminated the field measurements. The field measurements (MLS, HRV and 

SKGD data) were therefore clipped within a smaller domain. For HRV data, the tree 

positions are not directly available. Instead, the machine positions are logged and used 

𝐶𝑀𝐿3 = 𝑚3 

𝐶𝑀𝐿4 = 𝑚4 − 3𝑚2
2 

𝐶𝑀𝐿5 = 𝑚5 − 10𝑚2𝑚3 

𝐶𝑀𝐿6 = 𝑚5 − 15𝑚4 − 10𝑚3 + 30𝑚2
3 

eq. (1) 
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for an approximate positioning of the trees within blocks. Based on empirical knowledge, 

we assume the average tree positioning errors for HRV data should be < 5m. On all plots, 

the HRV positions could also extend outside the block boundaries (not shown in Figure 

4), since the HRV operator had to manoeuvre to access the trees in the blocks. 

The areas of three of the five blocks, namely blocks 4, 5 and 6, are substantially smaller 

(about half the size) compared to blocks 1 and 3. This was not planned, because initially 

all the blocks were intended to cover approximately equal areas. Unfortunately, due to 

some unexpected errors affecting the harvester routing on blocks 4,5 and 6, these blocks 

had to be adjusted to half the original extent. 

 

 

Figure 4. Overview of the block-level spatial datasets. The block boundaries are represented by the 

rectangular polygons. The tree positions provided by the MLS data are shown with blue dots, the harvester 

positions with black dots, and the pixel centres for SKGD raster with red crosses. 

 

3. Methods 

 3.1 Quantisation of DBH distributions and value recovery 

calculations 
MLS and harvester measurements provide datasets containing tree-level records of DBH 

values. The number of trees can vary substantially between different forest tracts and 

microstands. In addition, the stem price models (section 2.2.1) were constructed for 

predefined, discrete DBH classes. In order to obtain comparable DBH distributions and 

to perform the value recovery calculations, the raw, empirical DBH lists were compressed 

into a fixed set of discrete DBH classes corresponding to the stem price models in section 

2.2.1. This is equivalent to constructing frequency histograms with the number of bins 

equalling the number of DBH classes. The cuts for defining the histogram bins were 

selected as the intervals between the DBH classes in the stem price list. The DBH 

quantisation is not a requirement for value recovery calculations, but it allows a 

comparison of the reference and imputed tree lists by filtering out the differences in stem 

numbers. 

The species-specific and overall monetary value totals (in SEK) were calculated for 

microstands and blocks using the generic formulae: 
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For each diameter class c, the species-specific volumes 𝜏𝑉𝑜𝑙,𝑐
𝑠𝑝

 (m3) were obtained by 

aggregating the volumes 𝑣𝑐𝑘
𝑠𝑝

 for the subsets 𝑆𝑐 of trees that belong to certain species 𝑠𝑝, 

which were then summed to obtain the total volume by species 𝜏𝑉𝑜𝑙
𝑠𝑝

. The overall total 

volumes were obtained by aggregating the species-specific totals. Since the totals are 

correlated to areas, and the microstand and block have varying areas, the average per-

hectare volumes 𝜇𝑉𝑜𝑙𝑠𝑝
 and 𝜇𝑉𝑜𝑙 were also calculated. The values by species and diameter 

class were obtained by multiplying the 𝜏𝑉𝑜𝑙,𝑐
𝑠𝑝

 by the prices  𝑝𝑠𝑝,𝑐 (SEK/m³) from the price 

lists. The aggregation and the derivation of the per-hectare average values 𝜇𝑃𝑠𝑝
 and 𝜇𝑃 

(SEK/ha) follow the same reasoning as for volume calculations. 

 

3.2 Augmenting block-level auxiliary information  
The microstands in the training data are generated solely from the tree lists and machine 

positions in the harvester data. Segmenting larger forest tracts stands into microstands 

creates more homogeneous areas for post-harvest analyses and reduces the variance of 

the imputation results, mainly because (1) the correlations between the responses and 

auxiliary variables tend to increase with the homogeneity of the forest areas, and (2) 

increasing the size of the training dataset has a positive effect on the accuracy of nearest 

neighbour imputations. 

Using harvester data as input for segmentation is not an appropriate technique for 

predictive purposes since harvester data is not available for the standing forests. 

Consequently, only the algorithm for microstand creation can be applied in its current 

form for the training datasets. 

Reasonable questions would be whether or not the field blocks should be further 

segmented into microstands, and how the segmentation would work in the absence of 

harvester data. It could be argued that the field blocks have small areas, and a further 

segmentation into smaller units may not be justified in terms of increasing homogeneity. 

However, it is known that ensemble methods frequently used in machine learning, such 

as bagging (bootstrap aggregating), capitalise on averaging overly large sets of predictions 

produced by predictive models that have relatively low bias but high variance. Averaging 

such predictions will, theoretically, reduce both the bias and the variance of the 

aggregated results. Bootstrapping large databases can easily become a computationally 

demanding task, and the hierarchical structure of the training data (microstands nested 

into forest) would require specific implementation of the resampling procedure.  

However, the idea of increasing the number of predictions at block level for variance 

reduction does not depend upon bootstrap aggregation. More precisely, if there were a 

way to produce a large number of predictions within a block, then aggregating the results 

may increase the accuracy. As in the example of bagging, a main assumption here would 

be that each of the within-block predictions is approximately unbiased for the block-level 

𝜏𝑉𝑜𝑙,𝑐
𝑠𝑝

= σ 𝑣𝑐𝑘
𝑠𝑝

𝑘∈𝑆𝑐
  

𝜏𝑉𝑜𝑙
𝑠𝑝

= σ 𝑝𝑠𝑝,𝑐𝑐∈𝜑𝐷𝐵𝐻
𝜏𝑉𝑜𝑙,𝑐

𝑠𝑝
  

𝜇𝑉𝑜𝑙
𝑠𝑝

= 𝜏𝑉𝑜𝑙
𝑠𝑝

/𝐴𝑟𝑒𝑎  

𝜏𝑉𝑜𝑙 = σ 𝜏𝑉𝑜𝑙
𝑠𝑝

𝑠𝑝∈𝜑𝑆𝑃
  

𝜇𝑉𝑜𝑙 = 𝜏𝑉𝑜𝑙 𝐴𝑟𝑒𝑎⁄  

 

𝜏𝑃
𝑠𝑝

= σ 𝑝𝑠𝑝,𝑐𝜏𝑉𝑜𝑙,𝑐
𝑠𝑝

𝑐∈𝜑𝐷𝐵𝐻
  

𝜏𝑃 = σ 𝜏𝑃
𝑠𝑝

𝑠𝑝∈𝜑𝑆𝑃
  

𝜇𝑃
𝑠𝑝

= 𝜏𝑃
𝑠𝑝

𝐴𝑟𝑒𝑎⁄   

𝜇𝑃 = 𝜏𝑃 𝐴𝑟𝑒𝑎⁄  eq.(3

) 
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parameter of interest, which is a long shot in the case of near-neighbour imputations (as 

well as for any other model-based prediction method). Nevertheless, constructing 

approximately unbiased estimators for the block-level auxiliary averages is technically 

possible without the need for segmentation into microstands. Using the estimated 

quantities in the imputations can increase the confidence that the imputed attributes 

would at least not manifest major biases, provided there is a sufficiently large training 

dataset. In this case, the variance reduction is guaranteed by aggregation, independently 

of the amount of bias. We therefore propose a novel strategy for augmenting the block-

level predictions using so-called pseudo-plots, which do not rely on harvester 

information. The approach will be applied to the X.SKGD and X.MLS auxiliaries, in order 

to increase the number of imputations on each block. 

In order to explain the approach, we will first introduce the basic notation and some 

general concepts related to sampling theory for infinite populations – see Cordy (1993), 

Stevens & Urquhart (2000) and Mandallaz (2008, §4) for theoretical insights into this 

topic. We start by considering the simple case of estimating some parameter of a discrete 

population P (for instance, a population of trees) spread over a planar surface F of area 

λ(F). This would be the typical case for estimation following fixed-area plot sampling in 

forest inventories. We also assume that the boundaries of F are known (for instance, a 

polygon in a GIS framework), enabling us to define a sampling frame, and we have access 

to individual tree positions. The question now is how to select a sample of trees in F for 

the sake of inference on P, but unlike the discrete case, the inference here has a spatial 

component. For instance, we would like to infer something about the average volume per 

hectare, and not about the average tree volume. 

We do not intend to provide a full description of the topic here but, since we will be 

working mostly with per-hectare averages, we will follow the two-step explanation 

provided by Stevens & Urquhart (2000): (1) create a so-called local density of the 

attribute of interest at a single sampling point, and (2) use an appropriate estimator to 

aggregate the local densities obtained for a sample of points selected according to a pre-

determined probabilistic sampling design.  

An intuitive illustration explaining the local density calculation for an attribute at single 

random sampling point is described in Figure 5ab. First, note that each element (a red 

cross) of the discrete population P located within F receives an a priori neighbourhood 

support (dashed line circles Kr with radius r) that can be interpreted as a geometrical 

representation of its inclusion density (Figure 5a). The inclusion densities change with the 

location of the population elements (red crosses) relative to the F boundary. In Figure 5b, 

the local density of the attribute at a sampling point x (the blue dot) is calculated only for 

the population elements (red crosses) in F located within a neighbourhood (the blue 

circle) of radius r around x. It is vital that the local densities are design-unbiased (sensú 

Gregoire & Monkevich 1994) or simply unbiased (Scot & Bechtold 1995), which means 

that they are constructed at any location in a way that preserves the attribute of interest. 
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Figure 5. Plot configuration example. Figure in the left depicts four elements of a discrete population (red 

crosses), three (1,2, and 3) of which are located within a planar surface F (the sampling frame) of area λ(F). 

The inclusion densities of the points 1,2 and 3 are proportional to the intersection areas between the circles 

Kr (with radius r) and surface F.  Next, a sampling plot (blue circle Kr) located on a random sampling point x 

(blue dot) containing two population elements is shown in the right display. The local density at the 

sampling point x is calculated using an aggregation function that balances the inclusion densities of points 1 

and 2. 

 

In our particular case, the pseudo-plots sampling approach is applied to two discrete 

populations, one consisting of all MLS positions and the other of all the pixel centres in 

the SKGD rasters, across all blocks. The derivation of the local densities is described in 

Appendix A1.  

The partitioning by blocks is equivalent to stratification followed by independent 

sampling on each block. Basically, this means that the analyses can be run independently 

by block, and the block-level results can be then linearly aggregated. The same sampling 

points were used for estimating the local densities of X.MLS and for the X.SKGD 

auxiliaries. Since the sampling approach relies only on a GIS system, the sample size (i.e., 

the number of sampling points x) can be set arbitrarily to any reasonable value that is 

feasible for the user. However, the sample size selection should provide a trade-off 

between the computational intensity and accuracy (i.e., low sampling variance) and can 

be easily optimised using appropriate training data. Here, the sample size over all five 

blocks (approx. 1 ha) was set to 1000 points and adjusted for each block by 

proportionality to block area. 

3.3 The nearest neighbour imputation procedure 
The mechanics of nearest neighbour imputations requires two datasets: (1) a reference (or 

training) dataset that contains two types of variables: the responses (the attributes to be 

imputed) and feature variables (or auxiliaries), and (2) a target dataset that only consists 

of auxiliaries. The responses of the target dataset are considered as ‘missing’ and are 

selected as being among the responses (or combination of such) in the training dataset. In 

addition, the auxiliaries in both reference and target datasets must share the same feature 

space. A thorough discussion on tuning methods for nearest neighbour imputations in 

forest inventory applications is provided in McRoberts (2009) and McRoberts et al 

(2015).  
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For a feature subset 𝑍𝑞, the similarity measure between a pair of observations (𝑧𝑖 , 𝑧𝑗) is 

usually expressed using various distance metrics with the generic formulation: 

𝑑(𝑓𝑖 , 𝑓𝑗, 𝑊) = [(𝑓𝑖 − 𝑓𝑗)
𝑡
𝑊(𝑓𝑖 − 𝑓𝑗)]

1

𝑝
                                     eq. (2) 

where 𝑓𝑖,𝑖=1:𝑞 and 𝑓𝑗,𝑗=1:𝑞 are feature column vectors, W is a (q×q) weight matrix, and the 

exponent p is usually chosen as 1 or 2. The similarity metric used for running the 

imputations was the unweighted Euclidean distance (p=2 and W as identity matrix in eq. 

2) on the standardised features. The item-level predictions were obtained by averaging 

over k=5 neighbours for direct imputations at block-level, and by using k=1 for the 

pseudo-plots approach. In our case, tuning the imputation by selecting the most 

appropriate k-values and auxiliaries could be performed by resampling the training data 

in the harvester database. In the absence of field data for training, the similarity in a high-

dimensional feature space cannot be properly evaluated, and alternative tuning 

procedures must be developed. When using a limited source of auxiliary information 

(such as X.SKGD), the feature selection step can be skipped, since the feature space 

dimensionality is limited to four. 

At this point, it is worth mentioning that a different approach to imputations based on 

Most Similar Neighbour (MSN) as a similarity measure was used by Söderberg et al 

(2017) and Söderberg et al (2018) for yield and product recovery predictions. The MSN 

imputations rely on canonical correlation analysis that projects the auxiliaries and the 

responses onto a new coordinate system to construct orthogonal variables with maximal 

pairwise linear correlations, and the resultant correlation structure is then used as the 

matrix W in eq. 2. This may complicate the method assessment step, because each feature 

in eq. 2 would receive a small or large weight when calculating the similarities between 

training and reference data. For these reasons, the standardised Euclidean distance was 

adopted instead. The near-neighbour imputations were run using the implementation 

provided by the ‘yaImpute’ package (Crookston & Finley 2007) of the R statistical 

software (R Core Team 2020). 

3.4 Analyses and assessment 

3.4.1 Scenario analysis 
The effect of using MLS information to support near-neighbour imputations was assessed 

using a sensitivity analysis, where two main scenarios were defined. The first scenario (A) 

refers to imputations directly on block-level auxiliaries; in the second (B), the imputations 

using the pseudo-plots approach were grouped under scenarios B1 to B4, corresponding 

to using pseudo-plots with areas of 150, 250, 500 and 1000-m2. The reason for using 

several pseudo-plot areas was to test the robustness of the approach against the 

variability in MLS sample size at pseudo-plot level and inclusion densities caused by 

border effects.  

For each of the A and B scenarios, four cases were defined as combinations of different 

sets of auxiliary information: 1) X.SKGD, 2) X.SKGD +  X.MLS.c, 3) X.SKGD + X.MLS.q 

and 4) X.SKGD + X.MLS.c + X.MLS.q. 
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3.4.2 Accuracy assessment 

The similarity between the ground-truth (𝐷𝐵𝐻) and imputed DBH distributions (𝐷𝐵̂𝐻) 

was assessed using the chi-square histogram distance (Pele & Werman 2010), calculated 

as 𝜒ℎ
2(𝐻, 𝐻̂) =

1

2
σ (𝐻𝑖 − 𝐻̂𝑖)

2
𝑖∈ℎ (𝐻𝑖 − 𝐻̂𝑖)⁄  after quantisation into the same number of bins 

h corresponding to the DBH classes from the stem price list. This metric has the 

advantage of reducing the effect of mismatches between large bins (in terms of frequency 

or number of elements), which are commonly considered as being less important (or 

influential) than the differences between small bins. 

The main criteria for interpreting the imputation accuracy for the attributes of interest 

were the relative mean deviation (rMD) and relative mean absolute deviation (rMAD), 

calculated in percentages of the ground-truth attribute as  

𝒓𝑴𝑫(%) = 100 σ
𝑎𝑖(𝑍𝑖−𝑍̂𝑖)/𝑍𝑖

σ 𝑎𝑖1=1:5
𝑖=1:5   and 𝒓𝑴𝑨𝑫(%) = 100 σ

𝑎𝑖|𝑍𝑖−𝑍̂𝑖|/𝑍𝑖

σ 𝑎𝑖1=1:5
𝑖=1:5 . Both rMD and 

rMAD were calculated as weighted averages of the five blocks, where the weights were 

proportional with the block areas a. 𝑍𝑖and 𝑍̂𝑖 remain for the ground-truth and the 

predictions for volume (m³/ha) and monetary value (SEK/ha) on the ith-block, and the 

term deviations remains for the differences between ground truth and predicted values 

(𝑍𝑖 − 𝑍̂𝑖). Under scenario A (k=5), 𝑍̂̅ is the arithmetic mean over the k-neighbours 

imputed to a block, while under B (where k=1) 𝑍̂ is the average over the imputations on 

the pseudo-plots sampled at block-level. The use of mean absolute deviations instead of 

root-mean squared deviation on small validation datasets is justified due to its robustness 

against the influence of large outliers. 

4. Results 

4.1 DBH distribution predictions  
The correspondence between the diameter distributions from the imputed and empirical 

tree lists (as measured by the harvesters after the final forest cuts), quantified using the 

chi-square distance, are presented in Table 5. 
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Table 5. Average chi-square histogram distances between the imputed and ground truth DBH lists after 

quantisation by the DBH classes used by the stem price lists. 

 

Scenario 

Auxiliary information / Cases 

X.SKGD 
X.SKGD 

X.MLS.c 

X.SKGD 

X.MLS.q 

X.SKGD 

X.MLS.qc 

Case:                     (1)                                  (2)                               (3)                    (4) 

A 332.92 86.04 81.48 91.44 

B1 (150 m2) 343.73 83.44 83.50 86.01 

B2 (250 m2) 343.73 81.87 83.45 86.23 

B3 (500 m2) 343.73 86.96 85.13 88.82 

B4 (1000 m2) 343.73 89.75 85.85 89.79 

 

On average, the mismatches between the imputed and empirical DBH histograms were 

systematically smaller when X.MLS auxiliaries (cases 2-4) are included in the feature set. 

Using the forest state attributes (case 1) produced the largest differences. The best 

correspondences between the imputed and empirical DBH histograms were obtained 

under scenarios A/case 3 and B2/case 2 (with bold fonts in Table 5). Using the X.MLS.q 

(i.e., the DBH quantiles from the MLS measurements, case 3 in all scenarios) seems to 

provide overall best results. Imputations based on X.SKGD data alone (case 1 in all 

scenarios), even when controlled for dominant tree species, did not work satisfactorily. 

4.2 Volume predictions  
Tree species-specific and the block-level relative deviations for volume are presented in 

Table 6, together with overall rMAE and rME. The largest deviations (approx. -13% and 

30% for rMD and rMAD) occurred for scenario A/case 1 (X.SKGD auxiliaries), but 

including the DBH information (cases 2-4) halved both the rMD (down to 5-6%) and 

rMAD (13-15%). Using pseudo-plots (scenarios B1-B4) had a minor impact on rMD, 

which decreased to approx. -11% and 26% (case 1) and varied between -3 and -5% for 

cases 2-4. rMAD remained stable at 26% for case 1 and varied between 12 and 16% for 

cases 2-4.  

Compared to scenario A, using pseudo-plots decreased rMAD by approx. 10 percentage 

points (pp) for case 1 in scenarios B1-B4, and approx. 5-20 pp for cases 2 to 4. For rMD, 

the improvement under scenarios B1-B4 varied between approx. 2-37 pp for cases 2 to 4, 

and about 15 pp for case 1. The explanation for these relatively low to moderate 

improvements is that the block areas are quite small, producing low variability in the 

pixels sampled from the forest state estimates (X.SKGD) by a pseudo-plot, and because 

most of the new information comes from the X.MLS auxiliaries.  

It is also interesting to note that the largest errors under the B-scenarios occurred in 

blocks 1, 4, and 6, which underwent post-inventory modifications. A plausible explanation 

may be that the ground-truth information from harvester data (such as tree lists and 

volumes) on these blocks was contaminated, because separating the trees on sub-block 

areas is not possible using harvester data alone, since the information on tree positions is 

only approximated from the harvester locations. This allegation is also supported by the 
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fact that the DBH distributions provided by HVR and MLS (Figure 3) only match well in 

blocks 1 and 6, while moderate and large discrepancies occur in blocks 3, 4 and 5 

(especially block 3). A very intensive, virtually exhaustive MLS inventory provides a very 

high measurement accuracy, so an explanation for the discrepancies between the two sets 

of DBH measurements could be that the tree lists compiled from the harvester data may 

include trees located outside the blocks and exclude trees that are within the block 

boundaries. 

  



 

 

25 

 

Table 6. Errors in volume predictions. 

 

Scenario/Block 

Auxiliary information / Cases 

X.SKGD 

 

(1) 

X.SKGD    

X.MLS.c 

(2) 

X.SKGD 

 

(3) 

X.SKGD 

 X.MLS.qc 

(4) 

A) Direct imputations to block-level auxiliaries    

1 -49.43 -35.97 -31.67 -31.67 

3 -0.46 0.83 0.84 4.15 

4 -39.54 -16.60 -21.44 -15.17 

5 -43.77 -13.46 -18.46 -25.35 

6 -34.58 -0.21 0.09 0.09 

Overall rMD -12.51 -5.34 -5.53 -5.14 

Overall rMAD 29.71 13.17 13.67 14.77 

 B1) Block-level aggregation:  150 m2 circular pseudo-plots   

1 -27.79 -22.66 -28.54 -27.77 

3 -14.26 3.25 3.13 3.78 

4 -58.69 -23.13 -24.46 -23.67 

5 -22.95 -14.34 -16.44 -13.29 

6 -15.09 -3.70 -6.57 -4.74 

Overall rMD -10.81 -4.42 -5.44 -4.9 

Overall rMAD 25.66 12.54 14.83 13.96 

B2) Block-level aggregation:  250 m2 circular pseudo-plots   

1 -27.79 -22.72 -28.74 -26.69 

3 -14.26 2.87 2.97 4.21 

4 -58.69 -20.43 -19.50 -19.96 

5 -22.95 -16.21 -17.97 -14.84 

6 -15.09 -0.02 -2.02 -1.43 

Overall rMD -10.81 -4.2 -4.95 -4.31 

Overall rMAD 25.66 11.72 13.58 12.99 

B3) Block-level aggregation:  500 m2 circular pseudo-plots    

1 -27.79 -22.29 -28.07 -26.16 

3 -14.26 3.82 3.95 5.44 

4 -58.69 -18.57 -17.53 -18.17 

5 -22.95 -12.45 -13.02 -12.06 

6 -15.09 3.08 3.45 2.71 

Overall rMD -10.81 -3.46 -3.96 -3.60 

Overall rMAD 25.66 11.54 12.89 12.75 
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B4) Block-level aggregation:  1000 m2 circular pseudo-plots   

1 -27.79 -23.77 -26.42 -25.17 

3 -14.26 4.22 3.11 4.38 

4 -58.69 -18.28 -17.13 -17.73 

5 -22.95 -10.69 -12.25 -13.34 

6 -15.09 2.09 2.14 1.56 

Overall rMD -10.81 -3.49 -3.91 -3.77 

Overall rMAD 25.66 11.53 11.87 12.14 

4.2 Value recovery predictions 
The ground-truth stem values on the experimental blocks were evaluated by tree species 

according to the stem prices in Table 1. 

 

As for volume predictions, a similar pattern can be identified for value recovery 

predictions (Table 8). The lowest accuracy occurred under scenario A, 24-36% for rMAD 

and 6-28% for rMD. Once again, the worst results were obtained under case 1 (approx. 

36% and 28% for rMAD and rMD), but substantial improvements occurred for cases 2-4, 

about 23-33 pp for rMAD and 10-65 pp for rMD.  

 

The results under scenarios B1-B4 were quite stable at case level, about 28% and 30% for 

rMD and rMAD (case 1). Compared to case 1 in scenario A, a slight improvement of 

approx. 17 pp for rMAD could be observed, while the change in rMD was negligible. 

Important gains were noticed for cases 2-4, where rMAD decreased by approximately 33-

66 pp (to 11-18%), and rMD decreased by 40-67 pp (down to 2-6%).  

Across cases, the accuracy criteria under case 3 (DBH quantiles) were systematically 

better under scenarios B1-B4, followed closely by the combination of DBH cumulants and 

quantiles X.MLS.qc (case 4). Using only the DBH cumulants (case 3) produces best 

results under scenario A.        

Overall, using pseudo-plots with areas of 250 m2 produced a good balance between rMAD 

and rMD. Too small pseudo-plots will sample only a few MLS measurements, making the 

cumulants and quantile estimates not very reliable. Larger pseudo-plots will tend to over-

smooth the auxiliaries, as well as amplify the boundary effects.      
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Table 8. Species-specific and aggregated value recovery prediction. 

 

Scenario 

Auxiliary information / Cases 

X.SKGD 

 

(1) 

X.SKGD 

X.MLS.c 

(2) 

X.SKGD 

X.MLS.q 

(3) 

X.SKGD 

X.MLS.qc 

(4) 

A) Direct imputations to block-level auxiliaries    

Overall rMD 27.94 7.62 9.61 6.49 

Overall rMAD 35.84 27.50 27.03 23.53 

Spruce 31.25 15.60 15.50 13.66 

Pine -3.95 -9.94 -9.71 -8.52 

Deciduous sp. 0.64 1.96 3.82 1.35 

B1) Block-level aggregation:  150 m2 circular pseudo-plots   

Overall  rMD 28.02 5.78 4.13 5.03 

Overall rMAD 29.71 13.85 10.86 11.17 

Spruce 28.23 8.88 6.71 7.36 

Pine -0.85 -4.04 -3.36 -3.07 

Deciduous sp. 0.63 0.94 0.79 0.74 

B2) Block-level aggregation:  250 m2 circular pseudo-plots   

Overall  rMD 28.02 5.46 3.43 3.68 

Overall rMAD 29.71 13.93 10.45 10.59 

Spruce 28.23 8.84 6.24 6.42 

Pine -0.85 -4.23 -3.51 -3.46 

Deciduous sp. 0.63 0.86 0.70 0.71 

B3) Block-level aggregation:  500 m2 circular pseudo-plots    

Overall  rMD 28.02 3.18 2.11 2.78 

Overall rMAD 29.71 18.40 14.57 16.00 

Spruce 28.23 9.18 7.70 7.80 

Pine -0.85 -6.64 -6.23 -5.63 

Deciduous sp. 0.63 0.64 0.64 0.61 

B4) Block-level aggregation:  1000 m2 circular pseudo-plots   

Overall  rMD 28.02 3.69 3.26 3.67 

Overall rMAD 29.71 16.75 16.50 14.62 

Spruce 28.23 9.64 9.07 8.44 

Pine -0.85 -6.53 -6.62 -5.47 

Deciduous sp. 0.63 0.59 0.81 0.70 
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5. Discussion and conclusions 

The main objective of the study was to learn more about the use of mobile laser scanning 

data for volume and value recovery based on nearest neighbour imputation. The MLS 

data were limited to DBH measurements and tree positions, and they were not identical 

to the harvester data obtained on the same areas. At best, the tree lists provided by MLS 

could be considered as being produced by a highly intensive pre-harvest inventory 

following a probabilistic design. In fact, the probability sampling is an assumption only 

required to upscale the sample-level information. 

Overall, the DBH auxiliaries seem to have the dominating effect on accuracy. Using the 

X.MLS auxiliaries in addition to the forest state estimates in X.SKGD will generate more 

relevant near-neighbours among the reference observations, which will also match 

distribution (for DBH) and not only in the averages. In addition, X.MLS contains 

information that directly relates to the trees, and not proxies as X.SKGD. For value 

recovery, using the DBH auxiliaries with the pseudo-plots approach produces higher 

gains compared to volume predictions. Arguably this result depends strongly on the 

specific price lists used for value recovery, as well as on uncertainties in the species 

composition data. From this perspective, our results may be quite optimistic, since the 

stem prices we used were rather flat, and we controlled for tree species composition.   

Both types of auxiliary information extracted from DBH data (i.e., quantile and 

cumulants) produced nearly identical results. Using block-level imputations (scenario A 

in our study), using both the cumulants and the quantiles, seems to be a good option. 

With the pseudo-plots approach, using the cumulants may be more computationally 

advantageous and eliminates selection of the quantiles from the tuning process, an 

objective method for scaling up the cumulants still needs to be found. For this reason, 

using a priori selected quantiles may be a safer option in general. 

MLS data seem to underrepresent the small DBH categories. We do not have enough 

information to conclude whether this is a method limitation or a result specific to our 

study, but it is reasonable to assume that future technological developments will surely 

eliminate such issues. Nevertheless, it is unlikely that MLS will manage to provide a full 

census of the trees in a forest, a more realistic scenario being that the MLS data 

acquisition will be performed in a sampling approach. Probabilistic sampling methods 

should be sought, because they are objective and provide support for proper inference. 

Another relevant finding of the study is related to the data augmentation idea based on 

pseudo-plots. Even for our limited validation dataset, this approach looks promising. The 

pseudo-plots approach has several advantages – it does not require the development of a 

segmentation algorithm for generating microstands, it relies on a sound statistical 

framework, and can be computationally efficient for large datasets due to the ease of 

parallelisation. Further research should investigate methods for selecting the optimal 

pseudo-plot area, and a cross-validation approach would be a good start, assuming that 

the same type of spatial information is available both the training and validation data. For 

instance, creating small-area pseudo-plots on the microstands in the training data would 

be possible only if the tree positions are available in the harvester data, otherwise such 

pseudo-plots should cover a sufficiently large area to absorb the positional errors of the 

trees.         
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The costs of MLS data acquisition were not considered in our analyses, but the inventory 

costs may be justified by the substantial value recovery benefits resulted from injecting 

the DBH information. However, MLS is currently a rather complicated solution when the 

sole aim is to acquire DBH measurements. Accurate estimates of the true DBH 

distributions at forest tract stand level can be obtained using much simpler, low-cost 

sampling methods. A big strength of the MSL measurements is the ability to capture 

proxy information for stem quality, which otherwise could require more laborious field 

measurements (Murphy et al 2020). This information could be then inserted into the 

imputation workflow, in a similar way as with the DBH data, to further refine the value 

recovery calculations and for product recovery predictions using bucking simulations. We 

could not perform such analyses in this study because the quality information data was 

not available. This a major limitation of the study, in addition to the small and 

contaminated validation dataset.  

The imputations benefited from using error-free species information for stratifying the 

training and validation data during imputations. The stratification decision was justified 

due to the lack of register data usually used for this purpose. In practical applications, a 

perfect stratification, even only by the dominant tree species, is surely not possible since 

the information in the forest registers and from any cartographic product (such as 

vegetation maps) contains errors. Using the tree species information is critical for value 

and product recovery, since the prices and the specifications for wood products vary not 

only by dimension and quality, but also by tree species. When used with uncertain tree 

species information, the imputation accuracy will likely worsen. These aspects could not 

be properly addressed here, mainly due to the limited validation data, and further studies 

are needed. 

The study also assumed that the DBH measurements provided by the MLS and HRV are 

error-free. This assumption may hold for harvester data, since the calibrated harvester 

measurements are usually very accurate, but the expected DBH measurement errors from 

MLS would be in the range of about 10 mm (Willén et al 2018). A realistic measurement 

error propagation into the imputation framework could possibly be performed using 

Monte-Carlo simulations, provided that a model relating the measurement error to the 

tree size is available in the future.        

In conclusion, using pre-harvesting inventory data (such as MLS or any other sampling 

technique) may be useful for increasing the accuracy of near-neighbour imputations for 

value recovery and for forest attribute predictions, assuming that it is possible to control 

for the tree species compositions. Also, if the sampling design of the pre-harvesting 

inventory allows, it would be more advantageous to rely on imputations based on the 

proposed augmentation method to increase accuracy. 
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Appendix A1. Local density calculations for 

the data augmentation procedure 

The local densities at a position 𝑥 are obtained as: 

 

𝑌̅𝐾𝑟
(𝑥) = σ 𝑦(𝑡𝑖)𝑔(𝑥, 𝑡𝑖)𝑡𝑖∈𝐾𝑟

, 

 

where 𝑦(𝑡𝑖) is the attribute of interest 𝑦 for population element located at position 𝑡𝑖, 𝐾𝑟  is 

the neighbourhood support, and 𝑔(𝑥, 𝑡𝑖) is the aggregation function that depends not only 

on the sampling point location x, but also on the population element position (i.e., the 

tree position in F). The aggregation function 𝑔 returns the inverse of the proportion of 

overlapping area between the neighbourhood support Kr and F, defined as: 

 

𝜋(𝑡𝑖) = 𝜆(𝐾𝑟⋂𝐹)/𝜆(𝐹). 

 

Therefore, 𝑔(𝑥, 𝑡𝑖) can be written as 

𝑔(𝑥, 𝑡𝑖) = 1 𝜋(𝑡𝑖)⁄ , 

 

and the local density at x becomes a weighted average calculated as 

 

𝑌̅(𝑥) = [σ 𝑦(𝑡𝑖)/𝜋(𝑡𝑖)𝑡𝑖∈𝐾𝑟
]/[σ 1 𝜋(𝑡𝑖)⁄𝑡𝑖∈𝐾𝑟

]. 

 

The process can be then repeated for a sample 𝑆 of points (i.e., many blue dots in Figure 

5) selected using uniform random sampling on F. Under this simple, probabilistic 

sampling design, an approximately unbiased estimator for the average local density of the 

population attribute 𝑌̅ on F is then obtained as a ratio of two estimated totals 

  

𝑌̂̅ = [σ 𝑌̅(𝑥)/𝜋(𝑥𝑘)𝑘∈𝑆 ]/[σ 1/𝜋(𝑥𝑘)𝑘∈𝑆𝑘
], 

 

where the nominator is the Horvitz-Thompson estimator for spatial continuum (Cordy 

1993), and the denominator is an estimate of 𝜆(𝐹). 

For X.SKGD, the calculations follow directly the example above. Regarding the MLS data, 

each pseudo-plot provided an estimate for the DBH quantiles at block level, as well as a 

set of cumulants. The quantiles estimators 𝑀̂ were calculated as in Särndal et al (2003, 

§5.11), for the ordered set of DBH values  𝑦1:𝑠 < 𝑦2:𝑠 < ⋯ < 𝑦𝑁:𝑠 selected at a sampling 

point x using the cumulative sum 𝐵𝑙 = σ 1 𝜋(𝑡𝑗:𝑠)⁄𝑙
𝑗=1  as: 
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𝑀̂(𝑥) = {
𝑦𝑙:𝑠, 𝑖𝑓 𝐵𝑙−1 < 𝑞𝑁̂ < 𝐵𝑙

0.5(𝑦𝑙:𝑠 + 𝑦𝑙:𝑠), 𝑖𝑓 𝐵𝑙 = 𝑞𝑁̂
           eq.(A1)                                  

 

where 𝑞 is a selected quantile and 𝑁̂ = σ 1 𝜋(𝑡𝑖)⁄𝑡𝑖∈𝐾𝑟
 is the estimated number of trees at 

sampling point x. For the cumulants, which are non-linear statistics, we do not have an 

unbiased estimator as the one in equation A1. Therefore, they were calculated using equal 

weighting (i.e., 𝜋 = 1) of the DBH values selected at each sampling point. 

 


