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Preface
This project developed methods for utilising harvester data as in-situ data when tree 
species are mapped using remote sensing data, satellite data and LiDAR. Improved tree 
species mapping is crucial in view of its significant impact in yield predictions prior to  
forest operations to meet industry requirements. The project duration was 2019-2020. 
The Nils and Dorthi Troedsson research foundation contributed with funding for the  
project. We also wish to thank SCA Forest AB for the use of harvester data in the project.

Uppsala, March 2021

Liviu T. Ene & Jon Söderberg
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Sammanfattning
Målet med projektet var: 

	 (1)	 att införa en innovation genom att utveckla en robust metod för  
		  kartläggning av trädslag i operativt skogsbruk, och 

	 (2)	 att bedöma om en mer exakt information om trädslag skulle  
		  förbättra utbytesprognosens noggrannhet. 

Vi har utvecklat ett arbetsflöde för att automatisera de viktigaste databehandlingsstegen 
som kombinerar in-situ skördardata och GIS-produkter som multitemporala Sentinel-2- 
satellitdata, Skogliga grunddata och trädhöjdsraster från laserdata.

Volymbaserade trädslagsandelar beräknas för tall, gran och löv. Dessutom utvecklades en 
beräkningseffektiv rutin för att kombinera multitemporal datamängder för att minimera 
dataförlusterna på grund av moln i satellitdata.

Värdet av trädslagsinformation för utbytesprognoser bedömdes i tre scenarier: 

	 (A)	 baslinjefall utan trädslagsinformation, 

	 (B)	 att använda skattade trädslagsandelar, och 

	 (C)	 använda information om "perfekt" trädslag (avverkade trädslag  
		  från skördardata). 

Trädslagsinformation användes som hjälpdata i imputeringsrutinerna för utbytesprog-
noser, antingen som proportioner av stående volym per hektar eller som indikatordata 
(0-1) för det dominerande trädslaget. Avkastningsberäkningarna framställdes med hjälp 
av stamprislistor för de viktigaste trädslagen sammanställdes av Skogforsk med hjälp av 
branschdata från 2020 som var giltiga för vårt studieområde.

Det föreslagna arbetsflödet är robust, bygger uteslutande på programvara med öppen 
källkod och kan enkelt skalas upp för att hantera större studieområden. Dessutom möjlig-
gör det en bättre användning av in-situ data i skogsområdena täckta av moln. Resultaten 
visar ca. 100% minskning av de absoluta avkastningsförlusterna för gran och tall och 
ca. 20% minskning för lövträd när den förutsagda trädslagsinformationen införlivades i 
imputationerna.  Avvikelsen från det ideala fallet med felfri information om trädslag och 
volym reducerades med upp till 62% för gran, 59 % för tall och med 29 % för löv när de 
skattade trädslagsandelarna användes i utbytesprognoser.

Sammantaget visar resultaten att tillförlitlig information om trädslagsandelar är avgör- 
ande för att öka noggrannheten för avkastningsprognos. När det gäller effekterna för 
skogsindustrin bör resultaten ses som en konservativ skattning utbytesprognoser  
eftersom mervärdet av trädslagsinformation förväntas öka längre fram i virkesförsörj- 
ningskedjan.  
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Summary
The goal of the project was twofold; 

	 (1)	 to introduce a major innovation by developing a robust and accurate  
		  methodology for tree species mapping in operational forestry, and 

	 (2)	 to assess whether more accurate information on tree species would  
		  improve the accuracy of yield prediction.

We successfully developed a workflow for automating the main data processing steps  
that combines in-situ harvester data and GIS products such as multi-temporal Sentinel-2  
imagery, forest state estimates and height vegetation maps. Specific methods were  
employed for predicting the tree species proportions (relative to total standing volume). 
The three main groups of species considered were Spruce, Pine and Deciduous, which are 
of special interest for the wood industry. In addition, a computational-efficient routine 
was developed for combining multi-temporal datasets for minimising data losses caused 
by cloud occlusions in satellite imagery.

The value of tree species information on yield predictions was assessed using 
three cenarios; 

	 (A)	 baseline case with no species information; 

	 (B)	 using tree species predictions, and 

	 (C)	 using ‘perfect’ information on tree species (the ‘ground-truth’ data). 

Species information was incorporated as auxiliary data in the imputation routines, either 
as proportions of standing volume per hectare, or as indicator data (0-1) for the dominant 
species. The yield calculations were performed using stem price lists for the main tree 
species compiled by Skogforsk specialists, using industry data from 2020 that applied to 
our study area. 

The proposed workflow is robust, relies exclusively on open-source software, and can  
be easily scaled-up for handling larger study areas. The workflow also enables better use 
of ‘ground-truth’ data in the forest areas covered by clouds. The results show virtually a 
100% reduction of absolute yield losses for Spruce and Pine and an approximately 20% 
reduction for Deciduous species when the predicted tree species information was  
incorporated into the imputations. The gap between the baseline and ideal scenario C  
was reduced by up to 62% for Spruce, 59% for Pine and 29% for Deciduous when  
incorporating the predicted species-specific volumes into the imputation routines.

Overall, the findings demonstrate that reliable information on species proportion is vital 
for increasing the accuracy of yield prediction. With regard to the effects for the forest 
industry, the results should be seen as a lower bound, since the added value of tree  
species information is expected to compound further down in the wood supply chain.
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1.	Introduction
In recent years, Skogforsk has been actively supporting the digitalisation process in the 
Swedish forest industry. An important outcome of this process is the increased use of 
harvester data for feedback during forest operations, but also to improve yield predictions 
based on historical data. Yield predictions are essential for the wood supply companies, 
enabling them to schedule forest cuttings in a way that matches industry requirements. 
These cutting plans are usually based on yield predictions derived from information  
available in the stand databases, and the bucking decisions for cut-to-length logging are 
made in accordance with price and demand matrices for various timber assortments. 

The main challenge today is the quality of the information available in the stand  
databases. When the description of the forest stand is inaccurate, the yield estimate will 
be poor, and extra work will be needed to comply with industry requirements. Detailed 
information on tree height, basal area, timber volume and stem diameter is crucial for 
accurate yield predictions. These attributes may be efficiently and accurately predicted 
 at stand level (even better than most available forest stand data) by using airborne laser 
scanning (ALS) data, such as Skogliga grunddata provided by the Swedish Forest  
Agency. Equally important is the prediction of tree species composition, but detailed and 
highly accurate tree species mapping is currently lacking, potentially causing significant 
yield prediction errors.

The project idea was to develop a novel system for tree species mapping, combining freely 
available multitemporal, multispectral satellite imagery and ground-truth information 
provided by harvester data. This would make it possible for forest companies to improve 
their mapping of tree species in a very cost-efficient way, and significantly improve their 
yield predictions. The mapping can also be useful in forest management and planning as 
well as for mapping of “green infrastructure” and other environmental considerations.

The major innovation of the project is the use of a database containing large amounts  
of high quality in-situ forest data to support forest mapping. Data is collected with  
calibrated harvester measurements superior to any other in-situ measurements in  
terms of accuracy of measurements and number of observations. As the harvester data  
is collected continuously, this approach can provide a long-term solution for detailed  
forest mapping in combination with multitemporal, multisource GIS data. The main  
result of the project is a detailed procedure for tree species mapping with an accuracy  
that satisfies the requirements for forest planning operations and optimisation of the 
wood flow to industry. Also, the value of tree species information had been proved to be 
paramount for accurate yield predictions based on nearest-neighbour imputations. 

The expected impact is a more accurate and dynamic industry supply of timber and  
pulpwood with the requested species specifications. That would make it possible to  
improve the optimisation of the supply chain from forest to industry on a tactical  
planning horizon rather than the more reactive planning that is often the case today  
due to lack of precision in yield forecasts.
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2.	Material
The material contains two main types of data: (1) ground-truth information at tree-level 
obtained from the harvester production files, and (2) auxiliary information comprising 
multisource GIS datasets in raster format such as Sentinel-2 satellite imagery and various 
cartographic products airborne laser scanning data. The datasets were acquired for a 
study area of 53,384 ha across Västernorrland and Jämtland regions, an area managed by 
Svenska Cellulosa Aktiebolaget (SCA).

Figure 1. Sentinel-2 scenes outline across Sweden (left panel), with the selected regions of interest in 
green (scene 33VWK) and orange (scene 33VXK). The right panel contains an overview of the spatial 
location of the harvested forest stands within the study area.  

2.1 HARVESTER DATA
Harvester data from 345 forest stands that had been clear cut prior to Sentinel-2 and ALS 
data acquisitions were obtained, and then segmented into 2088 microstands (Figure 2) 
using the methodology described by Söderberg et al. (2017) and Söderberg et al. (2018). 
Tree species proportions in standing volume were calculated at stand and microstand 
level. The distribution by dominant tree species is summarised in Table 1:

Table 1. Number of observations (stands and microstands) by the dominant tree species. The values in 
parentheses represent percentages relative to totals. 

Sample size Spruce Pine Deciduous Contorta Toal

Stands 	 245 (71.01) 	 81 (23.5) 3 (0.87) 	 16 (4.64) 	 345

Microstands 	1316 (63.03) 	 624 (29.89) 7 (0.34) 	 141 (6.76) 	 2088
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Figure 2. Figure.2 Forest stand segmentation into microstands based on dominant height provided by 
harvester data. The microstands are derived by aggregating 13x13 m polygons based on their type of 
spatial connectivity ('HEL' in green color and 'DEL' in red color)..

In the analyses, microstands dominated by Scots pine and lodgepole pine, respectively, 
were merged into a single Pine class, because the price models (see section 2.2) for  
lodgepole pine were not available. A summary is shown in Table 2.

Attribute Statistic

Range (1) Mean CV (2)

Area (ha)

Stands 	 0.69-87.90 	 6.70 	 131.44

Microstands  	 0.69 -3.31 	 1.11 	 29.98

Volume (m3/ha)

Stands

Spruce
Pine
Deciduous

	 0(0.99) -500.29
	 0(0.23) -293.71
	 0(0.01) -128.08

	 136.56
  	 72.35
  	 19.39

	 59.23
	 88.23
	 107.63

Overall 	 50.57-1001.56 	 345.47 	 38.63

Microstands

Spruce
Pine
Deciduous

	 0(0.07) -745.86
	 0(0.05) -574.91
	 0(0.02) -196.98

	 147.78
  	 93.47
  	  17.71

	 72.69
	 95.54
	 125.02

Overall 	 71.97-838.49 	 258.97 	 40.19

(1) The minimum and maximum values, with the minimum positive value in the parenthesis
(2) Coefficient of variation relative in percentages relative to the average value

Table 2. Area (ha) and volume (m3/ha) distributions for forest stands and microstands.
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2.2 STEM PRICE MODELS
The yield calculations were performed using stem price lists for the main tree species 
compiled by Skogforsk specialists, using industry data from 2020 applicable to our study 
area. The prices for spruce and pine refer to round wood, while the low-grade wood from 
coniferous trees and all deciduous trees was aggregated into a common price category. We 
resorted to this simplification to eliminate the uncertainties related to assigning tree-level 
quality attributes from the assortment lists in the harvester data to the entire stem.

Table 3. Tree species-specific stem price list (SEK/m3 under bark) by breast height diameter (DBH) 
classes.

2.3 AIRBORNE LASER SCANNING DATA
The national ALS data survey Laserdata Skog is carried out by Lantmäteriet, with an 
updating frequency of about seven years. A new data acquisition campaign started in 
2018 and will cover 75% of the Swedish area (approx. 350,000 km²) with 1-2 points per 
m² (Anon 2020a). The first ALS returns are processed by the Swedish Forest Agency 
to obtain a canopy height model (CHM) in the form of a 2-m spatial resolution raster 
(“Trädhöydsraster Laser”), thereby providing a 3D description of the forest canopy  
surface (Anon 2020b).       

2.4 SATELLITE IMAGERY DATA
Satellite data related to our study area correspond to two Sentinel-2 tiles 33VWK and 
33VXK (Figure 1). The sensor has a swath of 290 km and a five-day revisit time at the 
Equator (Anon 2019cde). Each Sentinel-2 image contains 13 spectral bands encoded to 
16-bit per pixel, with spatial resolutions of 10 m (4 bands), 20 m (6 bands), and 60 m  
(3 bands). Only the 10- and 20-m spatial resolution bands were used for the study. To 
capture the changes due to seasonal phenology, at least three single, nearly cloud-free 
Sentinel-2 acquisitions are needed (preferably more), of which one during the leaf-off 
period (mid-spring) to help distinguish between coniferous and broadleaves, and two 
during the growth season to help discriminating the tree species in mixed forest stands. 
Therefore we decided to search for useful imagery data for the time intervals between 
May-November 2018 and 2019. Sentinel-2 data (geometrically corrected, georeferenced 
and calibrated to bottom-of-atmosphere reflectance, Anon 2019de) were downloaded  
freely from Copernicus Open Access Hub as 2A-level products using the open-source 
package ‘sen2r’ (Ranghetti et al. 2020) of the R statistical software (R Core Team 2020), 
using a limiting criterion for cloud coverage of maximum 25%. The image bands at 20-m 
spatial resolution were resampled to 10 m to obtain stacks of congruent rasters, and 
clipped using the microstand polygon borders. A quality check was performed on each  
microsegment to remove the image pixels that were not related to vegetation using the 
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Scene Classification Layer (SCL) which is also provided as a Sentinel-2 Level-2A output 
(Gascon et al. 2017, Anon 2020de). All the microstands included in the analyses have at 
least 25% of the pixels assigned to vegetation class. 

A total of 46 pairs of Sentinel-2 images (an image for each of the 33VWK and 33VXK 
tiles) were obtained – 28 pairs of images for 2018 and 18 for 2019 (Table 4). In addition, 
several Sentinel-2 RS vegetation indices (Henrich et al. 2009; Henrich et al. 2012)  
vegetation such as Chlorophyll Index Green (CIgreen), Chlorophyll Index Red Edge  
(CIrededge), Enhanced Vegetation Index (EVI), Normalised Difference Vegetation  
Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Transformed Soil Adjusted  
Vegetation Index (TSAVI), Wide Dynamic Range Vegetation Index (WDRVI),  Visible 
Atmospherically Resistant Indices 700  (VARI700)  were also calculated for each  
microstand from the BOA reflectance (Ranghetti et al. 2020). The formulae describing 
these indices can be found online at https://custom-scripts.sentinel-hub.com/custom- 
scripts/sentinel-2/indexdb/.

Table 4. The number of Sentinel-2 (A and B) images by year and by month available for the study area 
satisfying the condition of maximum 25% cloud coverage.

Year
Month

Total
May June July August September October November

2018
2019

7
1

3
4

7
4

2
3

4
4

5
1

0
1

28
18

Total 8 7 11 5 8 6 1 46

2.5 FOREST STATE MAPS
The raster maps for the main forest state attributes were produced between 2009-2014 
using the national ALS survey data. The Swedish Forest Agency (Skogsstyrelsen) and 
the Swedish University of Agricultural Sciences (Nilsson et al. 2017) combined the laser 
data and field plots from the Swedish National Forest Inventory to produced digital maps 
of the main attributes characterising the forest state, including basal area (BA), mean 
basal area weighted diameter and height (Dg and Hg, respectively), and standing volume 
(VOL), at a spatial resolution of 12.5 x 12.5 m. The map service, “Skogliga grunddata” 
(SKGD), is used by the entire forest sector to improve forestry planning, and serves as a 
basis for decisions concerning many different and new applications (Anon 2019f).  
Currently, the forest state attributes (VOL, BA, Dg and Hg) provided by SKGD are also 
some of the most important predictors for yield predictions in the imputation system 
developed by Skogforsk (Söderberg 2015, Söderberg et al. 2017, 2018). An example of a 
forest stand with microstand partitioning and selected auxiliary information is presented 
in Figure 3. 
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Figure 3. Forest stands and microstands as overlay on true colour (RGB) Sentinel-2 imagery (a),  
Canopy Height Model (provided by the Swedish Forest Agency) derived from the national airborne 
laser scanning survey data (b), and volume estimates from Skogliga grunddata (c).

2.6 FEATURE EXTRACTION FROM AUXILIARY DATA  
In order to build predictive machine learning algorithms, the microstand-level auxiliary 
information in raster format has to be represented more compactly to allow ingestion into 
the machine learning algorithms. Hence, several features were extracted from each type 
of auxiliary datasets to obtain vector-type data.

The averages and inter-quartile ranges were compiled from the unfolded Sentinel-2 bands 
and vegetation indices rasters, as well as for each forest attribute from the SKGD rasters. 
The eigen values of the unfolded raster stacks (i.e., the 10 bands of a Sentinel 2 image) 
were used to distribute image variability across the 10 radiometric bands. Prior to feature 
extraction, the imagery data was cleaned up by removing pixels unlikely to cover forest 
vegetation, using a mask corresponding to CHM regions with an average height below  
2 m.

Several descriptors of the vertical distribution of the forest canopy were extracted from 
the pixels in the CHM rasters above a 2-m height threshold, following Næsset (2004);

	 -	 the percentiles corresponding to 0.25, 0.5, 0.75 and 0.95 quantiles of  
		  the CHM height distribution within microstands.

	 -	 canopy densities derived by first dividing the range between the lowest  
		  (>2 m) and the 95th percentile CHM height into 10 equal height intervals.  
		  Canopy densities were then computed as the proportion of CHM pixels  
		  above each fraction to total number of CHM pixels. 

In addition, textural measures (mean, variance, homogeneity, contrast, dissimilarity,  
and entropy) were extracted from grey-level co-occurrence matrices (Haralik 1973,  
Figure 2) to characterise the spatial patterns in the CHMs at microstand level. CHM  
values were quantized to 16 grey levels, and the grey-level co-occurrence matrices (GLCM)  
were computed using a moving window of 3x3 pixels (to approximate the Sentinel-2 pixel 
size of 10x10m) over four directions with 90-degree shifts. The computations were  
performed using the ‘glcm’-package (Zvoleff 2020) of the R statistical software (R Core 
Team 2020).
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Figure 4. Features extracted from the grey-level co-occurrence matrix (GLCM) describing the height 
variation patterns in the Canopy Heigh Model (CHM).
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3.	Statistical methods
The main steps in method development are described in the following sections. The  
procedures were run using a data splitting approach, by randomly splitting the ground-
truth dataset into training-testing (75%) and validation (25%) datasets. The sampling 
units for data splitting were the forest stands, to preserve the hierarchical structure of  
the data characterised by strong dependencies among the microstands within the same 
forest stand. Splitting the data by microstand would lead to overoptimistic results, since 
microstands from the same objects may end up in both the training-testing and the  
validation datasets.

3.1 PREDICTIVE MODELS FOR TREE SPECIES PROPORTIONS
Tree species mapping requires that ground-truth observations (compiled from harvester 
data, see section 2.1) be linked to the vector of features extracted from auxiliary data  
(section 2.5). The result is a multi-temporal dataset containing the ground-truth obser- 
vations (which do not vary over time) and the set of auxiliary information obtained at 
each of the 46 time points between May-Nov. 2018 and 2019. In this dataset, the entire 
vector of imagery-related auxiliaries can be missing for several microstands at different 
time points, due to quality requirements imposed for imagery data (section 2.3). The 
missing auxiliary data will also produce a large variation in the sample sizes (approx.  
43% for training-test and 48% for the validation data, Table 5) containing both ground-
truth observations (microstands) and imagery data along the two-year interval.

There are several modern approaches addressing cloud removal and land surface recon-
struction using satellite data (see Shen et al. 2015, Meraner et al. 2020 and references 
therein), but they require large datasets, and the final result is an altered image product. 
Here we adopted a different strategy for handling missing imagery data in multi-temporal 
datasets, one that requires less data and does not alter the image content.

Tree species mapping was addressed as the process of predicting species proportions,  
and not as a traditional classification approach based on class probabilities (or odds).  
The reasoning for this was that predicted tree species proportions are required for  
distributing the predicted total volumes by species. Accurate species-specific volume  
predictions can then be used as new auxiliary data for controlling the imputations. 
Moreover, the assignment into various classes (i.e., the classification) can be seen as a 
biproduct of predicting the species proportions. For instance, classification into dominant 
tree species (by proportion in volume) can be easily retrieved after predicting the volume 
proportion for each species.

Datasets
Statistic

Range (min-max) Average CV (1)

Train 
Valaidation

	 288-1781
	 45-299

	 1341
	 254

43.3
47.6

Table 5. Sample size variation for training and validation temporal datasets.  

(1)  Coefficient of variation
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The tree species proportions were defined as the portions of the total volume (or total 
amount) allocated to each individual species (or component) at microstand level. The 
result is a typical compositional dataset (Aitchison 1982), where each observation (a data 
point) represents a vector on a simplex (Pawlowsky-Glahn & Egozcue 2001, Billheimer  
et al. 2001, Pawlowsky-Glahn 2003), as shown in Figure 5: 

Figure 5. Ternary diagram for composition data. The data points in the simplex 
represents the tree species proportion in volume for spruce, pine and deciduous, 
by microstands.  

The analysis of compositional data requires specific statistical methods that can account 
for the effects introduced by the compositional constraint.

A flexible approach is the use of so-called α-transformation (Tsagris et al. 2011) that  
extends the log-ratio transformations and naturally handles zero-valued components.  
The transformed data is mapped into an unconstrained d-dimensional space (d=D-1, 
where D is the number of components in the original composition) via multiplication  
with a Helmert sub-matrix. Feasible values for the α parameter (α є (-1,1)) can be  
estimated from the data and, as for the log-ratio transform, the results can be then 
mapped back to the simplex via an inverse α-transformation. The α-transformation  
approach was pursued further, and the compositional data analyses were performed  
using the ‘Compositional’-package (Tsagris & Athineou 2020) of the R statistical  
software (R Core team 2020).

The α-transformation was first applied to the species proportions (D=3) in the training 
data, resulting in a bivariate dataset (d=2) of new observations, and the transformed 
dataset was then analysed further using regression modelling tools. Using the R-package 
‘MASS’ (Venables W.N & Ripley B.D 2002), two sets of predictors were selected among 
the auxiliary training data using forward stepwise feature selection based on Bayesian 
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Information Criteria. Predictive models for the transformed variables were then multi-
variate additive regression models using the R-package ‘mgcv’ (Wood 2004, 2011). Due to 
the hierarchical structure of the data (microstands within stands), a stand-level random 
effect was included in each model as a penalised regression component to account for 
within-stand variability. This step is important if uncertainty estimates in the form of 
prediction errors are required. If only point predictions are sought, including random  
effects in the models, the step may not be necessary. The multivariate predictions were 
then back-transformed to the simplex.

3.2 SELECTING RELIABLE MULTI-TEMPORAL PREDICTIONS FOR 
SPECIES PROPORTIONS   
The models used for tree species mapping (section 3.1.1) were fitted independently on 
each time point in the training dataset, using only the observations comprising both 
ground-truth data and valid auxiliaries available at a particular date. The downside of  
this approach is that having the training data subsets varying by size hinders a direct  
comparison of the models. For this reason, the predictive power of the models was  
assessed using a Leave-One-Out Cross-Validation (LOOCV) resampling procedure 
following the recommendation of Hastie et al. (2009, §7.10). LOOCV was performed at 
stand-level by removing all microstands associated with a forest stand at a time to comply 
with the hierarchical structure of the datasets with microstands nested within stands. 

The mean absolute deviations (mad.cv) at microstand level and the multivariate  
predictions resulted after LOOCV were then back transformed to the simplex. The 95th 
percentile of the conditional mad.cv distribution was modelled using additive quantile 
regression via the R-package ‘qgam’ (Fasiolo et al. 2017) with the Chlorophyll Index Red 
Edge (CIrededge) vegetation index as covariate. Quantile regression enables the predic-
tion of the entire conditional distribution of the response (Koenker & Bassett 1978). For 
a specific quantile q, the quantile regression line will split the population scatter in a way 
that approximately 100q% of the data points will be located below the line and 100 (1-q)%  
above the line. To guarantee predictions that are bounded to (0, 1), the logistic transfor-
mation was applied to mad.cv values prior to fitting the quantile regression models, and 
the predictions (mad.cv.qu) were back-transformed. Since the logistic transformation is 
monotonic and there are no distributional assumptions on which the quantile regression 
is based, there is no reason to suspect a back-transformation bias. In the case of mad.cv, 
which is bounded to (0, 1), the conditional quantile regression predictions can be seen 
as approximations for the upper limit of simultaneous (‘across-the-function’) prediction 
intervals. This procedure does not guarantee exact coverage for a new dataset, being only 
a model-based approximation that may suffice for our analyses. 

Both criteria (mad.cv and mad.cv.qu) can be used for assessing the predictive power of 
the models fitted to multi-temporal data, but mad.cv.qu has the advantage of describing 
uncertainty for  the validation data directly. 

In addition, dominant tree species (by volume) were classified using LOO-CV at both 
microstand and stand level. Cohen’s Kappa (Cohen 1960) and the macro-averaged  
F1-score (Optitz & Burst 2019) derived from the confusion matrices using the R-package 
‘caret’ (Kuhn 2020) were used as validation metrics for classification. The goal is to  
identify the classifiers that maximise each of these criteria. For instance, Cohen’s Kappa 
values <0 can be interpreted as no agreement between the predicted and true classes, 
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0.01-0.20 as poor classifier performance, 0.21-0.40 as fair, 0.41-0.60 as moderate,  
0.61-0.80 as substantial, and 0.81-1.0 almost perfect agreement (Landis & Koch 1977). 
The F1 score varies from 0-1, and it should be as high as possible when averaged over all 
the classes.

A summary of the scoring criteria characterising the multi-temporal species proportion 
predictions and the subsequent classification by dominant species is presented in Table 6.  

Statistic

Criterion

F1 Kappa mad.cv mad.qu Pl coverage (2)

Stand Micro 
stand

Stand Micro 
stand

Stand Micro 
stand

Stand Micro 
stand

Stand Micro 
stand

	 Training  dataset

min
max
mean
CV (1)

0.68
0.90
0.79
7.31

0.57
0.90
0.81
8.28

0.37
0.79
0.57
19.71

0.20
0.79
0.62
20.50

0.08
0.13
0.11
10.64

0.07
0.13
0.10
12.65

1.50
2.51
1.97
14.45

2.20
3.46
2.83
10.11

0.95
0.99
0.96
0.90

0.95
0.96
0.95
0.20

	 Training+LOOCV

min
max
mean
CV (1)

0.67
0.90
0.78
7.25

0.50
0.89
0.79
9.81

0.35
0.79
0.56
19.83

0.07
0.78
0.58
24.70

0.08
0.13
0.11
12.34

0.08
0.13
0.11
12.34

2.15
3.83
2.77
13.97

2.52
4.39
3.39
13.73

0.92
0.97
0.95
1.07

0.86
1.00
0.93
2.91

	 Validation dataset

min
max
mean
CV (1)

0.65
0.95
0.85
7.67

0.52
0.94
0.84
10.78

0.21
0.84
0.62
56.83

0.08
0.86
0.64
50.82

0.08
0.16
0.12
15.29

0.08
0.14
0.11
15.78

1.51
2.76
1.99
14.26

2.19
3.44
2.86
9.95

0.75
0.95
0.88
5.97

0.84
0.98
0.93
3.50

Table 6. Scoring criteria for species proportion predictions and classification by the dominant class 
obtained on the training-validation datasets and LOO-CV.

(1) Coefficient of variation in percentages relative to average
(2)  Actual coverage of the simultaneous prediction intervals; the nominal coverage is 95%

The average values of mad.cv and mad.cv.qu at microstand level resulted from LOO-CV 
were then aggregated at each time point in the multi-temporal dataset. Each microstand 
in the validation data was then assigned the predictions produced by the best ranking 
model according to these two criteria.
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3.3 UPDATING THE FOREST STATE ESTIMATES 
The yield prediction method implemented at Skogforsk (Söderberg et al. 2017,  
Söderberg et al. 2018) is based on imputations using SKGD data (VOL, BA, Dg and Hg)  
as auxiliary information. However, SKGD can be outdated in certain situations due to  
the time interval or to major forest disturbances that occurred after the ALS data  
acquisition. Although we are rather confident that the latter situation is not a major 
concern for our analyses, we decided to update the forest state estimates in the SKGD by 
deploying statistical models developed from our sample data. Intuitively, it is expected 
that using more accurate forest state estimates would increase the imputation accuracy 
as well. Generalised additive regression models assuming a Gaussian distribution of the 
response and a square root link-function were fitted on the training data following the 
same steps as in section 3.1.1. The scatterplots of predicted versus ground-truth forest 
attributes in the validation data presented in Figure 6 indicate that the predictions based 
on updated (panel b) SKGD data are more accurate. 

Figure 6. Predicted versus ground-truth for forest state attributes on training and test datasets. Panel 
a: ground-truth forest state estimates (x-axis) versus Skogliga grunddata (SKGD). Panel b: ground-truth 
forest state estimates (x-axis) versus forest state attributes predicted using models fitted to sample 
data.

The species proportions predicted using the methods presented in section 3.1.1 were 
multiplied with the total volume predictions to produce the species-specific volumes, as 
shown in Figure 7.



18

Figure 7. Species-specific volumes (m3/ha) obtained from regression estimation. The results for  
training data are on the upper row, and the bottom row contains the results for the validation dataset.  

3.4 YIELD PREDICTIONS VIA NEAREST-NEIGHBOUR IMPUTATION
Nearest-neighbour imputations are simple, greedy algorithms used for searching in the 
feature space for finding the k (k≥1) observations that are close to each other based on 
some type of similarity measure. For instance, having a data sample (reference data) of 
multivariate observations containing ground-truth and auxiliary information, the  
imputation method will assign (or impute) the ground-truth data to new observations 
(target data) for which only the auxiliary data is available, such as forest stands that are 
scheduled for harvesting. Besides their relative simplicity, a major advantage of the  
imputation methods is the ability to handle multivariate ground-truth observations.  
Imputing several forest attributes from the reference data simultaneously can help  
preserve their natural covariance structure.

Imputing several reference observations (i.e., k>1) to a target observation can help  
increase the accuracy, but the accuracy deteriorates for large k values. The imputations 
for finding feasible k-values are usually tuned using a cross-validation approach. Based  
on results from previous projects, we adopted k=5 for our analyses following the approach 
presented in Söderberg et al. (2018) and Söderberg et al. (2019) that is using the Most 
Similar Neighbour method (Moeur & Stage, 1995). The computations were performed 
using the open source ‘yaImpute’ package (Crookston & Finley 2007) of the R statistical 
software (R Core Team 2020).

The auxiliary data for imputations consisted of (1) forest state estimates (VOL, BA, Dg 
and Hg from SKGD), and (2) forest state estimates (BA, Dg and Hg) predicted by the local 
models developed on the data training data subsets in combination with species-specific 
volume predictions, as described in section 3.1.1.
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4. Results and discussion
The yield prediction assessments were run under three scenarios:

	 A.	 Baseline, with no species information incorporated in the imputations.  
		  Although some information on tree species distribution may exist, it is  
		  not always available and is not spatially explicit. In addition, at microstand  
		  level, such data is relevant only if the species composition is strongly  
		  dominated by one tree species. Consequently, the baseline can be seen as  
		  the worst-case scenario.

	 B.	 Using tree species predictions as predicted species proportions (B.1), hot  
		  encoded as indicator data (0-1) by true dominant species (B.2) and predicted  
		  dominant species (B.3) by volume.

	 C.	 Using ‘perfect’ information (from the ‘ground-truth’ data) on species-specific  
		  volumes.  

For each scenario, the average individual tree volumes by DBH class (Table 1) were  
calculated using the tree lists obtained from the harvester production files, and the  
average tree species-specific yield values were obtained as SEK/ha. The species-specific 
gaps in monetary value are presented in SEK/ha and %, and the relative results (%) in-
cluding the overall gaps are summarised in Table 7 and Table 8:

Table 7. Gaps (%) to the ground-truth values under the three scenarios produced by imputations,  
using Skogliga grunddata forest state estimates and predicted species-specific volumes.   

Species Statistic Scenario

A B.1 B.2 B.3 C

Spruce Mean
CV (1)

49.05
15.83

24.10
8.14

31.19
9.27

35.11
12.15

9.03
19.42

Pine Mean 
CV

89.39
16.53

41.88
19.61

49.70
17.56

61.86
21.93

13.10
19.12

Deciduous Mean 
CV

75.67
7.53

59.53
9.30

69.95
7.94

78.61
24.77

14.20
15.36

Overall Mean 
CV

18.16
6.31

14.14
5.18

17.84
6.18

17.82
6.70

4.14
8.59

(1) Coefficient of variation (%) 
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Table 8. Gaps (%) in the ground-truth values under the three scenarios produced by imputations,  
using updated forest state estimates (BA, Dg and Hg) and predicted species-specific volumes.

Species Statistic Scenario

A B.1 B.2 B.3 C

Spruce Mean
CV (1)

37.85
14.54

25.42
8.95

25.82
11.83

29.76
13.25

9.90
15.91

Pine Mean 
CV

71.62
19.13

43.19
19.85

44.87
17.90

58.06
24.54

14.87
20.82

Deciduous Mean 
CV

76.58
8.49

59.04
11.05

71.37
7.14

80.42
23.87

16.39
11.72

Overall Mean 
CV

14.41
5.21

14.06
4.52

13.99
5.00

14.19
5.50

4.63
9.17

(1) Coefficient of variation (%) 

Figure 8. Species-specific gaps (SEK) under the three scenarios considered for imputations using forest  
state estimates from Skogliga grunddata in combination with regression-based species-specific  
volumes: A - no species information; B - predicted species information in the form of species  
proportion (B.1), predicted dominant species classes (B.2), true dominant species classes (B.3), and  
the ‘perfect information’ case (C). The mean absolute differences are shown in the upper row, and  
the mean differences are in the lower row.
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Figure 9. Species-specific gaps under the three scenarios considered for imputations using updated 
forest attributes as auxiliary data in combination with regression-based species-specific volumes: A - no 
species information; B - predicted species information in the form of species proportion (B.1), predicted 
dominant species classes (B.2), true dominant species classes (B.3), and the ‘perfect information’ case 
(C). The mean absolute differences are shown in the upper row, and the mean differences are in the 
lower row.

The classification results (Table 6) are heavily influenced by unbalanced training data, 
where the Deciduous species constituted a very small proportion. However, Cohen’s  
Kappa indicates a good to excellent agreement beyond chance between true and predicted 
classes (Fleiss et al. 2003, §18), and the average F1-scores around 0.8 are rather high (the 
closer to 1, the better). We would expect better results for a training dataset containing a 
larger sample of deciduous species. The average actual coverage of the simultaneous  
predictions intervals was slightly too short, missing the nominal 95% coverage by  
approximately 2 percentage points. 

The methodology cannot cope with microstands for which there is no imagery data  
available during the specific time interval. Possible solutions for such cases may be 
searching for imagery data within a wider time interval, using different source of auxiliary 
data such as radar imagery, relying exclusively on the auxiliary information provided by 
textural descriptors of the CHM models, or performing yield predictions without incor-
porating species information. For the latter case, the species composition at forest stand 
level can be retrieved from pre-harvesting field inventories. Alternatively, the stand-level 
information on species distribution from forest registers can also be used, but a loss in 
accuracy should be expected, since information quality is not always reliable and does not 
reflect local variability at microstand level.      
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The project demonstrates that the value of species information can be successfully  
quantified in economic terms. Even in regions with a small number of tree species, the 
predicted species proportions can noticeably improve the value recovery predictions.  
The best results were achieved when predicted tree species information in the form of 
species-specific volumes (m³/ha) was used in the imputations. The loss reduction was 
about 100% for Spruce and Pine, and approximately 20% for Deciduous species. This is  
in line with the species prediction accuracy, which was lowest for the minority class  
(Deciduous species). 

The gaps to the ideal scenario C were also smallest when using predicted tree species 
proportions (scenario B.1). When combined with the default SKGD information (Table 7), 
the gap for Spruce and Pine decreased by 59-62 percentage points (pp) compared to the 
baseline (scenario A), and 19-42 pp relative to scenarios B2 and B3, while for Deciduous 
the gap was reduced by approximately 24 pp (scenario A) and 17-27 pp under scenarios 
B2 and B3. Updating the SKGD auxiliaries (Table 8) improved the accuracy under all  
scenarios, but the gaps remained substantial, up to 44-50 pp for Spruce and Pine and 
about 34 pp for Deciduous. The overall loss reduction was approximately 22%, which 
is much less compared to the species-specific results. This is explained by the random 
compensations between over-and-underestimated yield predictions that can cancel each 
other out to a certain extent. However, the lower gap reduction due to random cancella-
tions does not appropriately characterise the results, since supply chain optimisation and 
industry require information on species-specific wood assortments.

The results also suggest that incorporating tree species information as predicted volumes 
by species is more efficient than using binary hot encoding for the dominant species. 
Although the classification is a by-product of the species proportion predictions, using 
continuous auxiliaries (volume estimates) instead of categorical (class labels) seems to 
improve the search results during imputations. 

The gains in the predicted yield are directly dependent on two factors: 

	 (1)	 the accuracy of total volume estimates, and 

	 (2)	 the accuracy of species proportion predictions. 

The results also indicate that the information on species proportions does not necessarily 
help improve the accuracy for total quantities (i.e., volumes m³/ha). However, more  
accurate volume estimates increase the accuracy of species-specific volume estimates.      
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5. Conclusions
Although the project addresses only a very specific link in the wood supply chain, it is  
expected that the gains generated by increased yield prediction accuracy will be  
compounded along the supply chain. More accurate yield predictions will also help  
increase efficiency in various planning activities related to transport and logistics and 
secure a better raw material supply for industry.         

The methodology can be further improved by extending the research in several  
directions, such as; 

	 -	 by including study areas with a higher tree species diversity.

	 -	 by ensuring a more balanced dataset with regard to species distribution, to  
		  avoid including minority classes in the analyses. 

	 -	 by including vegetation height raster maps from multi-temporal airborne  
		  laser scanning data. A new data acquisition campaign started in 2018, and  
		  will cover 75% of the Swedish area (approx. 350,000 km2) with 1-2 points  
		  m² (Anon 2019d). The differences in average forest height between two time  
		  points would reflect the site productivity. If the forest age can be retrieved  
		  from the local data (like forest registers), the estimated change can be linked  
		  to species-specific site productivity for a finer tuning of the imputation method.

	 -	 by developing a procedure for using the vegetation classes from the upcoming  
		  National Land Cover Database (currently under development) maintained by  
		  the Swedish Environmental Protection Agency as proxies for estimating tree  
		  species proportions and for mitigating missing data issues related to cloud  
		  occlusions.

	 -	 not least, including information on wood quality compiled from the harvester  
		  production files would enable a more comprehensive assessment.       
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