

Model and solution method for an integrated value chain problem for sawmills

Maria Anna Huka, Marc-André Carle, Sophie D'Amours and Mikael Rönnqvist

BOKU - University of Natural Resources and Life Sciences, Vienna FORAC - Univesité Laval, Québec

19 August 2015

- 1 Problem description
- 2 Optimization approach
- **3** Heuristical solution approach
- 4 Literature
- 5 Numerical experiments

1 Problem description

- 2 Optimization approach
- 3 Heuristical solution approach
- 4 Literature
- **5** Numerical experiments
- 6 Conclusion and outlook

Problem description

Goal

Optimization of the Canadian value chain from forest to customers passing four production units

- harvesting unit
- sawing unit
- drying unit
- finishing unit

with a mixed integer program including detailed dry kiln scheduling.

Problem description cont'd

Context

BCKU

- Solving on a tactical level
- Satisfying demand for specific products
- Problem of co-production in sawing and planing, e.g. chips, sawdust and shavings
- Characteristics of MIP model which makes it difficult to solve; symmetric with respect to drying units, high flexibility in flows, weak LP formulation
- LP model for solving material flow from forest to customers and between sawmills
- IP model for detailed dry kiln schedule solved as a sub-problem with an IP model and is fed to the MIP model as good starting solution
- Decomposition to solve large scale MIP problem

Motivation

1

Value Chain from forest to customers

Maria Anna Huka

Model and solution method for an integrated value chain problem for sawmills

Problem description

- 2 Optimization approach
- 3 Heuristical solution approach
- 4 Literature
- **5** Numerical experiments
- 6 Conclusion and outlook

Mixed integer program

MIP model

- Maximizing revenue of delivered products, profit of green, dried and planed lumber minus sum of costs (harvesting, sawing, drying, planing, transportation and inventory costs)
- Capacity constraints
- Inventory constraints
- Demand satisfaction constraint for green, dried and planed lumber
- Binary constraint for dry kiln scheduling

Model properties

Characteristics

- Divergent and complex problem
- Symmetric with respect to drying units
- High flexibility in flows
- Weak LP formulation
- No solution in reasonable amount of time

- Problem description
- 2 Optimization approach
- **3** Heuristical solution approach
- 4 Literature
- **5** Numerical experiments
- 6 Conclusion and outlook

Split heuristic

Heuristic based on time composition

- 1. Divide the planning horizon into *n* equal intervals with length *k*
- 2. Solve problem P_j and get the solution and keep **binary** variables
- 3. Set these binary variables equal to 1 and add them as **new** constraints in the problem P_{i+1}
- 4. Solve the problem P_{i+1} and get the solution and keep binary variables
- 5. Increment i, i = i + 1
- 6. If i > n then stop
- 7. Go to step 3.

Split heuristic cont'd

Divided planning horizons

Figure : Time decomposition over the planning horizon to solve overall model

Maria Anna Huka

LP relaxation heuristic

MIP based heuristic

- 1. Solve **linear relaxation** of problem. Get optimal supply plan and fix all continuous variables
- Solve MIP-based heuristic to fix kiln drying batch decisions
- 3. Resolve original model while fixing integer kiln drying decision variables

LP relaxation heuristic cont'd

Solution phases

Maria Anna Huka

Model and solution method for an integrated value chain problem for sawmills

- Problem description
- 2 Optimization approach
- 3 Heuristical solution approach

4 Literature

- **5** Numerical experiments
- 6 Conclusion and outlook

Literature

Heuristic solution approaches

Two different approaches:

- Time decomposition
 - Ouhimmou, M., D'Amours, S., Beauregard, R., Ait-Kadi, D.,

and Chauhan, S. S. (2008). Furniture supply chain tactical planning optimization using a time decomposition approach. European Journal of Operational Research,

European Journal of Operational Research 189(3):952–970

LP relaxation

 Chauvin, D. (2014). La comptabilité par activités appliquée aux scieries pour la planification de production et la valorisation des produits.

Master's thesis, Université Laval

- Problem description
- 2 Optimization approach
- **3** Heuristical solution approach
- 4 Literature
- 5 Numerical experiments

Data

Case study

- 5 forest
- 4 saws
- 6 dry kiln
- 63 periods
- 9 log types

- 23 green lumber
- 21 dried lumber
- 85 planed lumber
- 4 customers
- 4 harvesting processes

- 39 sawing processes
- 6 drying processes
- 3 planing processes

Data

Case study

- 5 forest
- 4 saws
- 6 dry kiln
- 63 periods
- 9 log types

- 23 green lumber
- 21 dried lumber
- 85 planed lumber
- 4 customers
- 4 harvesting processes

- 39 sawing processes
- 6 drying processes
- 3 planing processes

Complexity of problem

```
Presolve eliminates 0 constraints and 11088 variables.
Adjusted problem:
573111 variables:
9072 binary variables
564039 linear variables
142665 constraints, all linear; 2882445 nonzeros
39675 equality constraints
102990 inequality constraints
1 linear objective; 483147 nonzeros.
```

```
CPLEX 12.6.1.0: mipdisplay 2
```


Contribution margin and share of the optimal solution in %

	CAD	%	runtime
MIP model	1,584,390	100	\sim 154 min
Split heuristic	681,885	43	\sim 5 min
LP relaxation heuristic	1,382,620	87	\sim 9 min

Contribution margin and share of the optimal solution in %

	CAD	%	runtime	
MIP model	1,584,390	100	\sim 154 min	
Split heuristic	681,885	43	\sim 5 min	
LP relaxation heuristic	1,382,620	87	\sim 9 min	
Revenue, profit and cost of the heuristics in %				
Revenue, profit and cost of	of the heuristics	in %		
Revenue, profit and cost o	of the heuristics revenue	in % profit	cost	
Revenue, profit and cost of Split heuristic	of the heuristics revenue 43	in % profit 33	cost 33	

Maria Anna Huka

- Problem description
- 2 Optimization approach
- 3 Heuristical solution approach
- 4 Literature
- **5** Numerical experiments

Conclusion and outlook

Conclusion

- Value chain from forest to customer satisfying all orders
- Bucking decision at forest in model
- Introduction of dry kiln planning on the tactical level
- Reduction of computational time by about 95 % with heuristic approach
- 87 % of optimal solution with heuristic

Conclusion and outlook

Conclusion

- Value chain from forest to customer satisfying all orders
- Bucking decision at forest in model
- Introduction of dry kiln planning on the tactical level
- Reduction of computational time by about 95 % with heuristic approach
- 87 % of optimal solution with heuristic

Outlook

- Including bin packing problem into drying constraint
 - Stacking restrictions
 - Placement restrictions
 - Heterogeneous batch loads
- Comparing Canadian case to an Austrian case
- Expanding the value chain to additional subsequent processing users

Thank you for your attention!

University of Natural Resources and Life Sciences, Vienna

Department of Economics and Social Sciences Institute for Production and Logistics

Maria Anna Huka

Feistmantelstrasse 4, A-1180 Vienna Tel.: +43 1 47654-4425, Fax: +43 1 47654-4417 maria.huka@boku.ac.at, www.boku.ac.at