TIMING THE NEXT FOREST INVENTORY

INCORPORATING FOREST OWNER PREFERENCES AND FOREST DATA QUALITY

KYLE EYVINDSON, ANNIKA KANGAS, AARON PETTY

CONTENT

PROBLEM OVERVIEW
KEY CHALLENGES
PROBLEM FORMULATION
PRELIMINARY RESULTS
CONCLUSIONS / MOVING FORWARD

PROBLEM OVERVIEW

- In addition to developing a management plan, the forest owner also wants to decide when to re-inventory the forest
- The issue is primarily about data quality
 - the quality degrades over time, so one way to look at it is as an optimization problem:
 - Conduct a new inventory when improvements to the objective function are maximized
 - (If an inventory was conducted later, it will produce a lower objective function value)

PROBLEM OVERVIEW

- A theoretical case study based on real data will be used as an example:
- 47.3 ha, mainly Scots pine and Norway spruce (some birch)
 - Fairly even age class distribution.
- The forest owner wants to maximize net present value while minimizing deviations from even-flow style constraints (measured as the conditional value at risk).
- The planning horizon is 30 years, six 5-year periods.
- Uncertainty sources: inventory error (+-10% standard deviation Basal Area and height), growth model error an AR(1) model (Pietilä et al. 2010).

WHAT IS CVaR:

- CVaR is a measure of risk, evaluated as the average loss exceeding a specific probability.
- Directly related to the Value at Risk (VaR) which is the expected loss at a specific probability.

HOW TO EVALUATE CVaR:

 CVaR can be evaluated in a stochastic programming framework. Rockafellar and Uryasev (2000) have shown how to utilize it in an optimization framework. CVaR can be used as a constraint or as a part of the objective function.

$$CVaR = Z + \frac{1}{(1-\alpha)N} \sum_{n=1}^{N} [L_n - Z]^+$$

• where:

Z - is the VaR (a decision variable) L_n - Loss of scenario n α - is the probabilityN - total number of scenarios

KEY CHALLENGES:

- This problem required a shift from
 - two-stage stochastic programming with simple recourse
 - to:
 - two-stage stochastic programming with recourse

• Requires a method of resolving part of the uncertainty while maintaining the total uncertainty of the problem.

WHAT IS THE DIFFERENCE?

 Stochastic programs can be approximated through a large number of scenarios. From LP to SP: H – harvest, T – Thin, N – Do nothing.

PROBLEM FORMULATION:

Objective function:

$$\max \sum_{n=1}^{N} p_n NPV_n - \lambda \sum_{t=1}^{T} \frac{CVaR_t}{T}$$

I - Income

PV - Productive value Subject to: x - decision $[1] NPV_n = \sum_{k=1}^{T} \frac{I_{nt} - w_t q}{(1+r)^{(t+5-u)}} + \sum_{i=1}^{J} \sum_{k=1}^{K_j} \frac{PV_{n6}}{(1+r)^{30}}, \forall n = 1, \dots, N$ L - Loss $q - \cos t$ of inventory [2] $L_{nt} = [I_{nt} - w_t q - b_t]^+, \forall n = 1, ..., N, t = 1, ..., T$ *b* – periodic target [3] $CVaR_t = \left(1 - \sum_{n=1}^t w_p\right) \left(Z_t + \frac{1}{(1-\alpha)N} \sum_{n=1}^N [L_{nt} - Z_t]^+\right)$ s – actions in schedule M – Large number λ – risk parameter $+\left(\sum_{n=1}^{t} w_{p}\right) \sum_{f=1}^{F} \frac{1}{F} \left(Z_{t} + \frac{1}{(1-\alpha)N_{f}^{t}} \sum_{n \in \mathbb{N}^{t}} [L_{nt} - Z_{t}]^{+}\right), \forall t = 1, \dots, T$ F – number of subsets $[4] \sum_{k=1}^{K_j} (x_{jkf} - x_{jkg}) s_{jkt} - \sum_{m=1}^t w_p * M \le 0, f \in F, g \in F, j \in J, t = 2, ..., T, f \neq g$ nonanticipativity constraints $[5] \sum_{k=1}^{K_j} (x_{jkg} - x_{jkf}) s_{jkt} - \sum_{m=1}^t w_p * M \le 0, f \in F, g \in F, j \in J, t = 2, \dots, T, f \neq g$ $[6] \sum_{t=1}^{T} w_t \le 1 \qquad [7] I_{nt} = f(x_f) [8] PV_{n6} = f(x_f) [9] x_{jkf} \in \{0,1\}, w_t \in \{0,1\} \text{ for all } t \in T, f \in F, j \in J, k \in K$

MANAGEMENT DECISIONS:

 Depending on the optimal timing will determine the shift from first stage to second stage.

MANAGEMENT DECISIONS: CVAR ISSUES.

MANAGEMENT DECISIONS:

RESULTS:

- Four parameters of the model can be adjusted based on the preferences of the decision maker and current economic situation:
 - λ risk parameter (varied from 0.1 2)
 - b_t Periodic income target (60,000 \in / period)
 - r Interest rate (4%)
 - q Inventory costs (500 \in) roughly 11 \in / ha

To highlight the shift, for each λ all possible options for conducting inventories were solved.

RESULTS:

CONCLUSIONS / MOVING FORWARD

- Demonstrated a two-stage stochastic programming with recourse
 - Allows for a resolution of uncertainty during the planning horizon.
- For this case:
 - With a near risk neutral DM ($\lambda = 0.1 to 0.175$), delay inventory until end of planning period.
 - With a moderately risk averse DM ($\lambda = 0.2 to 0.3$), delay inventory until middle of planning period
 - Changing interest rate, costs of inventory will also cause a shift.

MOVING FORWARD

- Some assumptions made could be relaxed
 - (Which for a small holding may be true, but for a large holding may not...)
- Complete re-inventory \rightarrow Partial re-inventory
 - select an area which benefits most from a new inventory
- Improvement in inventory method reduction in uncertainty
 - future inventory methods may have improved accuracy

REFERENCES

- Rockafellar, R. T., and Uryasev, S. 2000. Optimization of conditional value-at-risk. J. Risk, 2: 21-42.
- Pietilä, I., et al. (2010). Influence of growth prediction errors on the expected losses from forest decisions. Silva Fennica 44(5): 829-843.

SORTING TO CREATE SECOND STAGE DATASETS:

- Large set of all scenarios:
 - *N* red square
- 1st opportunity to inventory
 - N_f^1 blue, yellow, green rectangles
- 2nd opportunity to inventory
 - N_f^2
- Last opportunity to inventory
 - N_f^{6}
- N_f^t is a subset of N,
- $N_{f_1}^t \cap N_{f_2}^t = \emptyset$ for all $f_1 \neq f_2$ and $\bigcup_{f \in F} N_f^t = N$

