Sequencing: Optimal Scheduling of Activities Across Hierarchies of Management

Karl R. Walters, Client Services Director – Remsoft SSAFR 2015, Uppsala Sweden

REMS()FT®

Introduction

- Large body of research on crew scheduling for tree harvesting but little on silvicultural scheduling
- Reforestation & plantation maintenance
 - Complex problem, need to coordinate multiple activities
 - Scheduling resources such as machinery and workers
 - Delivering planting stock, fertilizer, chemicals
 - Logistics of moving equipment, etc.

Plantation Establishment in Brazil

- Expanding forestry land base in southern Brazil
 - One client plans to increase plantations by 50 000 ha every year!
- Short rotations
 - 7 or 8 years, so delays in reforestation are costly
 - Plantations require regular maintenance to sustain productivity
- Workforce drawn from local towns
 - Various tasks, specialized skills (equipment operators) are limited
 - Workers commute via bus, company caters lunches
- Equipment is organized around UGOs
 - Associated with tree farms, but sometimes UGOs work elsewhere in nearby farms

A highly simplified example problem

- Decisions: assign equipment UGOs to plantations, allocate workers from nearby towns
- Monthly planning periods, 12-18 month planning horizon
- Objective: maximize area planted within time frame
- Constraints
 - Limited number of workers in each town, fixed daily work hours
 - Commuting time deducted from work time
 - Longer commutes to tree farms reduces daily production
 - UGO have same types of equipment but not same # of resources
 - All plantations must be planted
 - Plantations may require more than one month to complete

www.remsoft.com

Formulation

- Use a model I type of formulation for prescriptions
 - 1 decision variable = planting across multiple planning periods
 - Depending on size of plantation and productivity rates, prescriptions may span 2 or more planning periods
 - Binary decision variables (entire plantation must be planted)
- Need a way to quickly determine how long a job requires
 - Productivity rates are key to making this work
 - Can be as simple as ha/month, or could be equation taking into account terrain, seasonality, crew equipment etc.
 - Prescriptions can vary productivity across periods (start-up and float can reduce productivity.

Woodstock Syntax

- *REGIME rPlant
 - *OPERABLE rPlant
 - ? ? ? IMP ? OK ? N _AGE >= 1 ; afforestation
 - ? ? ? REF ? OK ? N _AGE >= 1 ; reforestation

• *PRESCRIPTION rxPlant

*OPERABLE ? ? ? ? ? OK ? N _AGE >= 1
*TARGET ? ? ? MNT ? ? ? Y 100 _AGE 1
_PERIODSTOCOMPLETE(yPrate,_BINARY)
_RXPERIOD _ACTION _CAPACITY
0 aPlant 100%; productivity can be <> 100%
1 aPlant 100%

6 plantations, 3 tree farms, 1 UGO, 750ha/month

- <u>EB002 F0006 Selv Ref U2 A1 L0 N</u> 1 |Aaunit:F0006| 461.55 ha <u>EB009 F0006 Selv Ref U2 A1 L0 N</u> 1 |Aaunit:F0006| 318.47 ha <u>EB018 F0011 Selv Ref U2 A1 L0 N</u> 1 |Aaunit:F0011| 656.01 ha <u>EB041 F0020 Selv Ref U2 A1 L0 N</u> 1 |Aaunit:F0011| 347.07 ha <u>EB043 F0020 Selv Ref U2 A1 L0 N</u> 1 |Aaunit:F0020| 495.62 ha
- B1 <= EB002
 - B2 <= EB009, split into 288.45 (1), 30.02 (2)
 - B3 <= EB018
 - B4 <= EB299, split into 93.99 (1), 253.08 (2)
 - B5 <= EB041

B6 <= EB043, split into 254.38 (1), 184.55 (2)

Remsoft

Algebraic formulation (MILP)

!Objective
MAX OUT0000B++OUT0000C+OUT0000D+OUT0000E
ST
! Initial Block Constraints
X1) B1+B4+B7+B10+BU13 = 1
X2) B2+B5+B8+B11+BU14 = 1
X3) B3+B6+B9+B12+BU15 = 1
! Existing Stand Area Constraints
! Future Stand Area Transfer Rows (RU vars=completed plantations)
-B3 + RU16 = 0
-B3 + RU17 = 0
-B2 + RU18 = 0
-B2 + RU19 = 0
-B1 + RU20 = 0
-B1 + RU21 = 0
-B6 + RU22 = 0
-B6 + RU23 = 0
- B5 + RU24 = 0
-B5 + RU25 = 0
-B4 + RU26 = 0
- B4 + RU27 = 0
-B9 + RU28 = 0
-B9-B12 + RU29 = 0
-B8 + RU30 = 0
-B8-B11 + RU31 = 0
- B7 + RU32 = 0
-B7-B10 + RU33 = 0
0

! Accounting variables +461.55B1 +288.449744B1 +656.01B2 +93.9898366B2 +384.07B3 +365.930123B3 -OUT0000B = 0 !OAREF(A1)[1] +30.0202561B1 +344.940163B2 +129.689877B3 +461.55B4 +288.449744B4 +656.01B5 +93.9898366B5 +384.07B6 +365.930123B6 -OUT0000C = 0 !OAREF(A1)[2] +30.0202561B4 +344.940163B5 +129.689877B6 +461.55B7 +288.449744B7 +656.01B8 +93.9898366B8 +384.07B9 +365.930123B9 -OUT0000D = 0 !OAREF(A1)[3] +30.0202561B7 +344.940163B8 +129.689877B9 +461.55B10 +288.449744B10 +656.01B11 +93.9898366B11 +384.07B12 +365.930123B12 -OUT0000E = 0 !OAREF(A1)[4]

INTEGER **B1** INTEGER **B2** INTEGER **B3** INTEGER **B4** INTEGER **B5** INTEGER **B6** INTEGER **B7** INTEGER **B8** INTEGER **B9** INTEGER **B10** INTEGER **B11** INTEGER **B12**

Plantation Sequencing 9 5 EB032 EB041 EB022 (4)EB014 EB043 EB018 9 8 F0020 EBQ28 EB002 EB001 (3)EB037 F0011 4 EB045 F0006 EBQ39 6^{EB031} 2 EB026 $\overline{2}$ (3) EBQ09 EBQ11 EB299 EB311 **5**EB310 EB350 EB136 EB128 F011 6 F0049 9 EB269 ₿ EB308 EB167 2 EB335 EB301 8 Crew 1 F0159 Crew 2 **5**^{EB305} Crew 3 A Month of Planting

Formulation

- Use a model I type of formulation for prescriptions
 - 1 decision variable = planting across multiple planning periods
 - Depending on size of plantation and productivity rates, prescriptions may span 2 or more planning periods
 - Binary decision variables (entire plantation must be planted)
- Use analysis area unit structure for tree farms
 - Planting prescriptions are linked together using analysis area units
 - Allocation of tree farms in a sequence forces plantations to be sequenced as well
 - Structurally the same as prescriptions but at higher order
 - Binary decision variables (no revisits to a farm)

Woodstock Syntax

*REGIME rPlant
*OPERABLE rPlant
<u>? ? ? IMP ? OK ? N</u> _AGE >= 1 ; afforestation
<u>? ? ? REF ? OK ? N</u> _AGE >= 1 ; reforestation
*SEQUENCE _ASAP _TH2 _TH6 ; schedule by farm and UGO
*PRESCRIPTION rxPlant
*OPERABLE ? ? ? ? ? OK ? N _AGE >= 1
*TARGET ? ? ? MNT ? ? ? Y 100 _AGE 1
_PERIODSTOCOMPLETE(yPrate,_BINARY)
_RXPERIOD _ACTION _CAPACITY
0 aPlant 90% ; productivity reduced 1st month
1 aPlant 100%

*YC <u>? ? ? ? ? ? ? ? ?</u> YPrate _EQUATION(yAerea / 750) *AACONTROL KEEPAASGOING

Remsoft

www.remsoft.com

Woodstock Syntax

*REGIME rPlant

*OPERABLE rPlant

? ? ? IMP ? **OK** ? N _AGE >= 1 ; afforestation

? ? ? REF ? **OK** ? N _AGE >= 1 ; reforestation

*SEQUENCE _ASAP _TH2 _TH6 ; schedule by farm and UGO

F0006 -> F0049 ; Farm 6 must be completed before Farm 49
*PRESCRIPTION rxPlant

Real-world Example

- Minimize cost of planting, resources, buses
- ~800 plantations in about 270 farms
- 5 work types (laborer, foreman, operator, driver, tractor)
- 17 sources for workers but not all have every worker type or numbers of each worker type
- 6 UGOs for planting (3 manual, 3 mechanical)
- 50 constrained resources
- Seasonality restrictions on activities
- 18 month planning horizon

Real World Example

- Model Size
- ;* Matrix summary
 - ; Elapsed time = 0:01:46
 - ; Columns = 225,622
 - ; Rows = 94,247
 - ; NonZeros = 2,297,237
 - ; Filesize = 91,738,498

;

- ;* Solver summary
- ; Elapsed time for solver 13:36:38
- 5% gap

Operational Scheduler in Continuing Development

- Currently used in operational harvest planning projects in several countries
- Right now limited to a single action within prescriptions
 - Representing all activities by same action in Woodstock doesn't capture precedence of some activities
 - Requires blended rates on some activities/costs
- Dependence on MILP formulations
 - Some model formulations solve very quickly yet others struggle to even find feasible solutions
 - More research into lifting constraints to help improve performance

