Optimizing the harvest timing in uneven-aged forestry

Janne Rämö Olli Tahvonen

Department of Economics and Management
University of Helsinki

Even- vs. Uneven-aged forestry

Rotation vs. Continuous cover forestry

- Even-aged, or Rotation forestry (Faustmann 1849, Samuelson 1976)
 - Artificial regeneration
 - Clearcuts e.g. every 75 years

- Uneven-aged, or Continuous cover forestry
 - Natural regeneration
 - Selection cuttings e.g. every 10-25 years

Background

- Traditionally clearcuts and artificial regeneration (Siiskonen 2007; Lundmark et al. 2013; Gauthier et al. 2009)
- The analyses have focused on even-aged management following Faustmann (1849) and Samuelson (1976)
- Interest towards uneven-aged management has increased (Lämås and Fries 1995; Bergeron and Harvey 1997; O'Hara 2002; Axelsson and Angelstam 2011)
- Heterogeneous stands provide higher non-timber values and resilience against e.g. climate change (Noss 2001; Thompson et al. 2009; IPCC 2014)

Literature review

- Existing economic studies applying general dynamic optimization use fixed harvesting interval (e.g. Haight 1987, Haight & Monserud 1990a; b; Tahvonen 2009; Tahvonen et al. 2010; Tahvonen 2011; Rämö & Tahvonen 2014).
 - Not possible to study the optimal transition towards the optimal steady state!
- AFAWK, Wikström (2000) the only paper in which the harvest interval may vary
 - Additional constraints e.g. on stand volume
- Only few papers study the transition from even to unevenaged stands (e.g. Tahvonen et al. 2010; Tahvonen 2011)

Optimizing the harvest timing

- Not only what to harvest, but also when
- Allows to study
 - optimal, unconstrained uneven-aged management
 - optimal transitioning from even-aged to uneven-aged
- Without fixed harvesting cost it is optimal to harvest every period (e.g. Rämö & Tahvonen 2014)
 - Results in low yields
 - → Include fixed costs

Optimizing the harvest timing

- Mixed-integer nonlinear problem
 - Computationally very demanding
- With the fixed costs we have a timing problem in a discrete-time mixed-integer model
- Solved using bilevel optimization (Colson et al. 2007)
 - Applied e.g. in Stackelberg (1952) leader-follower game theory setting
 - Harvest timing is optimized using random restart hill-climbing algorithm (Russell & Norvig 2009, p. 122–125)
 - Harvest intensities are optimized with Knitro optimization software

Growth model

Bollandsås et al. (2008)

- Empirically estimated, size structured transition matrix growth model for uneven-aged stands
- Norway spruce at H₁₀₀=24

Diameter increment

$$I_{st} = 14.8398 + 0.0476\delta_s - 11.585\delta_s^2 - 0.3412BAL_{st} - 0.024BA_t$$

Ingrowth
$$\phi_t = \frac{-2.99BA_t^{-0.018}}{1 + e^{-(53.142 - 0.157BA_t)}}$$

Natural mortality
$$\mu_{st} = \left(1 + e^{-\left(-2.492 - 0.02\delta_s + 3.2\delta_s^2 + 0.031BA_t\right)}\right)^{-1}$$

Cost function

Empirically estimated (Nurminen et al. 2006, Surakka & Siren 2010)

$$C_{t} = \sum_{s=1}^{n} h_{st} \left[0.412 + 0.758v_{s} - 0.180v_{s}^{2} \right] 1.15C_{cut}$$

$$+ \left[17.838g_{t} + 2.272\sum_{s=1}^{n} h_{st}v_{s} + 0.535\left(\sum_{s=1}^{n} h_{st}v_{s}\right)^{0.7} \right] C_{haul} + g_{t}C_{fixed}$$
Hauling time

$$v_s = v_{s,sawn} + v_{s,pulp}$$

Hauling costs, C_{haul} , are set to 60 €per hour Moving and cutting costs, C_{cut} , to 126 €per hour Fixed costs 100-500 €

Optimization problem

$$\max_{\{g_t \in \mathbf{g}, h_{st} \in \mathbf{h}\}} \pi = \sum_{t=0}^{\infty} \left(\sum_{s=1}^{n} \sum_{j=1}^{k} h_{st} p_j v_{sj} - C_t \left(\mathbf{h}_t, \mathbf{v}_s \right) \right) b^{5t}$$

subject to

$$X_{1,t+1} = \phi(\mathbf{X}_t) + \gamma_1(\mathbf{X}_t) X_{1t} - h_{1t}$$

$$X_{s+1,t+1} = \beta_s(\mathbf{x}_t) X_{st} + \gamma_{s+1}(\mathbf{x}_t) X_{s+1,t} - h_{s+1,t}$$

$$X_{n,t+1} = \beta_{n-1}(\mathbf{x}_t) X_{n-1,t} + (1 - \mu_s(\mathbf{x}_t)) X_{nt} - h_{nt}$$

$$s=1,2,...,n-2, t=0,1,2...$$

$$g_t \in \square : [0,1]$$

$$h_{st} = g_t h_{st} \ \forall t \in \square : [0,1,2,...\infty)$$

$$h_{st} \ge 0, x_{st} \ge 0, s = 1, 2, ..., n, t = 0, 1, 2...$$

Results

Effect of fixed harvesting cost

Fixed cost. €

Touriger ever aged starid			
Harvest	100	300	500
1	5	10	10
2	15	25	25
3	25	40	55
4	35	55	80
5	45	70	105
Steady state interval	10	15	25
Old even aged stand		Fixed cost, €	
Harvest	100	300	500
1	0	0	0
2	45	45	55
3	55	60	80
4	65	75	105
5	75	90	130
Steady state interval	10	15	25
Uneven-aged stand	3 25 40 4 35 55 5 45 70 7al 10 15 nd Fixed cost, € est 100 300 1 0 0 2 45 45 3 55 60 4 65 75 5 75 90 7al 10 15		
Harvest	100	300	500
1	0	0	0
2	10	15	25

Steady state interval

Younger even aged stand

Optimal times of transition harvests and steady state interval from different initial states with fixed harvesting costs of 100€, 300€ and 500€ with 3% interest rate.

Transition depends on initial state, while steady states are the same

Effect of fixed harvesting cost

Younger even aged stand	Fixed cost, €			
Harvest	100	300	500	
1	5	10	10	
2	15	25	25	
3	25	40	55	
4	35	55	80	
5	45	70	105	
Steady state interval	10	15	25	
Old even aged stand		Fixed cost, €		
Harvest	100	300	500	
1	0	0	0	
2	45	45	55	
3	55	60	80	
4	65	75	105	
5	75	90	130	
Steady state interval	10	15	25	
		Fixed cost 6		

Optimal times of transition harvests and steady state interval from different initial states with fixed harvesting costs of 100€, 300€ and 500€ with 3% interest rate.

Uneven-aged stand Fixed cost, € Harvest Steady state interval

Transition depends on initial state, while steady states are the same

Effect of fixed harvesting cost

Stand basal area, number of trees and stand volume development from different initial stands with 3% interest rate, and fixed harvesting costs of 100€, 300€ and 500€.

Effect of fixed harvesting cost Optimal steady states

Fixed harvesting cost, EUR	Average annual yield, m ³ ha ⁻¹	Profit per harvest, EUR ha ⁻¹	No. of harvested trees per harvest, ha-1	No. of trees after harvests ha ⁻¹	Basal area before/after harvests, m ³ ha ⁻¹	Average annual natural mortality, trees ha ⁻¹	Average annual ingrowth, trees ha-1	Diameter of harvested trees, cm
100	5.3	2513	95	626	20.3/11.3	2.3	11.7	25-34,9
300	5.5	3795	136	623	26.6/11.2	2.4	11.4	25-39.9
500	4.8	5304	250	618	31.2/6.3	2.2	12.2	20-44.9

The higher the fixed cost, the longer the interval and the heavier the harvests

Optimal steady states, 1-5% interest rate, 300€ fixed cost

Interest rate	Average annual yield, m ³ ha ⁻¹	Profit per harvest, EUR ha ⁻¹	No. of harvested trees per harvest, ha ⁻¹	No. of trees after harvests ha ⁻¹	Basal area before/after harvests, m ³ ha ⁻¹	Average annual natural mortality, trees ha ⁻¹	Average annual ingrowth, trees ha ⁻¹	Diameter of harvested trees, cm
1 %	6.1	4438	109	717	33.7/16.9	3.0	10.3	30-44.9
2 %	5.6	5352	172	619	33.0/11.0	2.5	11.2	25-44.9
3 %	5.5	3795	136	623	26.6/11.2	2.4	11.4	25-39.9
4 %	4.6	4059	209	507	25.0/6.4	2.0	12.5	20-39.9
5 %	4.3	2727	163	511	19.2/6.5	1.9	12.8	20-34.9

The higher the interest rate, the lower the stand density
Less dense stand results in higher growth rate due to density dependency

Optimal steady states, 1-5% interest rate, 300€ fixed cost

Interest rate	Average annual yield, m ³ ha ⁻¹	Profit per harvest, EUR ha ⁻¹	No. of harvested trees per harvest, ha ⁻¹	No. of trees after harvests ha ⁻¹	Basal area before/after harvests, m ³ ha ⁻¹	Average annual natural mortality, trees ha ⁻¹	Average annual ingrowth, trees ha ⁻¹	Diameter of harvested trees, cm
1 %	6.1	4438	109	717	33.7/16.9	3.0	10.3	30-44.9
2 %	5.6	5352	172	619	33.0/11.0	2.5	11.2	25 -44.9
3 %	5.5	3795	136	623	26.6/11.2	2.4	11.4	25-39.9
4 %	4.6	4059	209	507	25.0/6.4	2.0	12.5	<mark>20</mark> -39.9
5 %	4.3	2727	163	511	19.2/6.5	1.9	12.8	20-34.9

The higher the interest rate, the lower the stand density
Less dense stand results in higher growth rate due to density dependency

Figure 3: Stand structure and harvested trees in steady state with interest rates 1% - 5%, with 300€ fixed cost. Size classes begin at 7.5cm and increase in 5cm increments.

Younger even aged stand	b	Int	erest rate		
Harvest	1 %	2 %	3 %	4 %	5 %
1	20	15	10	5	0
2	35	35	25	25	15
3	50	55	40	45	30
4	70	75	65	65	50
5	85	95	80	85	65
Steady state interval	15	20	15	20	15

Times of transition harvests and steady state interval from different initial states with interest rates of 1%-5% and 300€ fixed cost

Uneven-aged stand		Int	erest rate		
Harvest	1 %	2 %	3 %	4 %	5 %
1	0	5	0	0	0
2	10	25	15	20	15
3	25	45	30	40	30
4	40	65	55	60	45
5	55	85	70	80	60
Steady state interval	15	20	15	20	15

cf. Faustmann: Higher interest rate results in shorter rotation

Optimal solutions compared to legal limitations

Optimal solutions compared to (a) Swedish and (b) Finnish forest legislation

Note: fixed harvesting cost €300, initial state a young even-aged stand

¹Should not be violated without a special permission

²Violation implies an artificial regeneration obligation

Conclusions

- Bilevel optimization produces a coherent picture of optimal uneven-aged management
- Including the harvest timing in optimization is crucial
- Same steady state solution regardless of initial state of the stand
- Increasing fixed harvesting costs postpones harvests and lengthens steady state interval
- Increasing interest rate decreases physical yield, average stand density and the size of harvested trees, but steady state interval may lengthen or shorten

Thank you for your attention!

janne.ramo@helsinki.fi